|
|
|
@ -1,3 +1,12 @@
|
|
|
|
|
//! This module contains kernel helper functions that may be exposed to specific BPF
|
|
|
|
|
//! program types. These helpers can be used to perform common tasks, query and operate on
|
|
|
|
|
//! data exposed by the kernel, and perform some operations that would normally be denied
|
|
|
|
|
//! by the BPF verifier.
|
|
|
|
|
//!
|
|
|
|
|
//! Here, we provide some higher-level wrappers around the underlying kernel helpers, but
|
|
|
|
|
//! also expose bindings to the underlying helpers as a fall-back in case of a missing
|
|
|
|
|
//! implementation.
|
|
|
|
|
|
|
|
|
|
use core::mem::{self, MaybeUninit};
|
|
|
|
|
|
|
|
|
|
pub use aya_bpf_bindings::helpers as gen;
|
|
|
|
@ -5,6 +14,31 @@ pub use gen::*;
|
|
|
|
|
|
|
|
|
|
use crate::cty::{c_char, c_long, c_void};
|
|
|
|
|
|
|
|
|
|
/// Read bytes stored at `src` and store them as a `T`.
|
|
|
|
|
///
|
|
|
|
|
/// Generally speaking, the more specific [`bpf_probe_read_user`] and
|
|
|
|
|
/// [`bpf_probe_read_kernel`] should be preferred over this function.
|
|
|
|
|
///
|
|
|
|
|
/// Returns a bitwise copy of `mem::size_of::<T>()` bytes stored at the user space address
|
|
|
|
|
/// `src`. See `bpf_probe_read_kernel` for reading kernel space memory.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::{c_int, c_long}, helpers::bpf_probe_read};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let kernel_ptr: *const c_int = 0 as _;
|
|
|
|
|
/// let my_int: c_int = unsafe { bpf_probe_read(kernel_ptr)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with my_int
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns a negative value wrapped in an `Err`.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read<T>(src: *const T) -> Result<T, c_long> {
|
|
|
|
|
let mut v: MaybeUninit<T> = MaybeUninit::uninit();
|
|
|
|
@ -20,6 +54,149 @@ pub unsafe fn bpf_probe_read<T>(src: *const T) -> Result<T, c_long> {
|
|
|
|
|
Ok(v.assume_init())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read bytes stored at the _user space_ pointer `src` and store them as a `T`.
|
|
|
|
|
///
|
|
|
|
|
/// Returns a bitwise copy of `mem::size_of::<T>()` bytes stored at the user space address
|
|
|
|
|
/// `src`. See `bpf_probe_read_kernel` for reading kernel space memory.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::{c_int, c_long}, helpers::bpf_probe_read_user};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let user_ptr: *const c_int = 0 as _;
|
|
|
|
|
/// let my_int: c_int = unsafe { bpf_probe_read_user(user_ptr)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with my_int
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns a negative value wrapped in an `Err`.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read_user<T>(src: *const T) -> Result<T, c_long> {
|
|
|
|
|
let mut v: MaybeUninit<T> = MaybeUninit::uninit();
|
|
|
|
|
let ret = gen::bpf_probe_read_user(
|
|
|
|
|
v.as_mut_ptr() as *mut c_void,
|
|
|
|
|
mem::size_of::<T>() as u32,
|
|
|
|
|
src as *const c_void,
|
|
|
|
|
);
|
|
|
|
|
if ret < 0 {
|
|
|
|
|
return Err(ret);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Ok(v.assume_init())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read bytes stored at the _kernel space_ pointer `src` and store them as a `T`.
|
|
|
|
|
///
|
|
|
|
|
/// Returns a bitwise copy of `mem::size_of::<T>()` bytes stored at the kernel space address
|
|
|
|
|
/// `src`. See `bpf_probe_read_user` for reading user space memory.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::{c_int, c_long}, helpers::bpf_probe_read_kernel};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let kernel_ptr: *const c_int = 0 as _;
|
|
|
|
|
/// let my_int: c_int = unsafe { bpf_probe_read_kernel(kernel_ptr)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with my_int
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns a negative value wrapped in an `Err`.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read_kernel<T>(src: *const T) -> Result<T, c_long> {
|
|
|
|
|
let mut v: MaybeUninit<T> = MaybeUninit::uninit();
|
|
|
|
|
let ret = gen::bpf_probe_read_kernel(
|
|
|
|
|
v.as_mut_ptr() as *mut c_void,
|
|
|
|
|
mem::size_of::<T>() as u32,
|
|
|
|
|
src as *const c_void,
|
|
|
|
|
);
|
|
|
|
|
if ret < 0 {
|
|
|
|
|
return Err(ret);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Ok(v.assume_init())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read a null-terminated string stored at `src` into `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// Generally speaking, the more specific [`bpf_probe_read_user_str`] and
|
|
|
|
|
/// [`bpf_probe_read_kernel_str`] should be preferred over this function.
|
|
|
|
|
///
|
|
|
|
|
/// In case the length of `dest` is smaller then the length of `src`, the read bytes will
|
|
|
|
|
/// be truncated to the size of `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::c_long, helpers::bpf_probe_read_str};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let kernel_ptr: *const u8 = 0 as _;
|
|
|
|
|
/// let mut my_str = [0u8; 16];
|
|
|
|
|
/// let num_read = unsafe { bpf_probe_read_str(kernel_ptr, &mut my_str)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with num_read and my_str
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns Err(-1).
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read_str(src: *const u8, dest: &mut [u8]) -> Result<usize, c_long> {
|
|
|
|
|
let len = gen::bpf_probe_read_str(
|
|
|
|
|
dest.as_mut_ptr() as *mut c_void,
|
|
|
|
|
dest.len() as u32,
|
|
|
|
|
src as *const c_void,
|
|
|
|
|
);
|
|
|
|
|
if len < 0 {
|
|
|
|
|
return Err(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let mut len = len as usize;
|
|
|
|
|
if len > dest.len() {
|
|
|
|
|
// this can never happen, it's needed to tell the verifier that len is
|
|
|
|
|
// bounded
|
|
|
|
|
len = dest.len();
|
|
|
|
|
}
|
|
|
|
|
Ok(len as usize)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read a null-terminated string from _user space_ stored at `src` into `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// In case the length of `dest` is smaller then the length of `src`, the read bytes will
|
|
|
|
|
/// be truncated to the size of `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::c_long, helpers::bpf_probe_read_user_str};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let user_ptr: *const u8 = 0 as _;
|
|
|
|
|
/// let mut my_str = [0u8; 16];
|
|
|
|
|
/// let num_read = unsafe { bpf_probe_read_user_str(user_ptr, &mut my_str)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with num_read and my_str
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns Err(-1).
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read_user_str(src: *const u8, dest: &mut [u8]) -> Result<usize, c_long> {
|
|
|
|
|
let len = gen::bpf_probe_read_user_str(
|
|
|
|
@ -40,6 +217,65 @@ pub unsafe fn bpf_probe_read_user_str(src: *const u8, dest: &mut [u8]) -> Result
|
|
|
|
|
Ok(len as usize)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read a null-terminated string from _kernel space_ stored at `src` into `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// In case the length of `dest` is smaller then the length of `src`, the read bytes will
|
|
|
|
|
/// be truncated to the size of `dest`.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf::{cty::c_long, helpers::bpf_probe_read_kernel_str};
|
|
|
|
|
/// # fn try_test() -> Result<(), c_long> {
|
|
|
|
|
/// # let kernel_ptr: *const u8 = 0 as _;
|
|
|
|
|
/// let mut my_str = [0u8; 16];
|
|
|
|
|
/// let num_read = unsafe { bpf_probe_read_kernel_str(kernel_ptr, &mut my_str)? };
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with num_read and my_str
|
|
|
|
|
/// # Ok::<(), c_long>(())
|
|
|
|
|
/// # }
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns Err(-1).
|
|
|
|
|
#[inline]
|
|
|
|
|
pub unsafe fn bpf_probe_read_kernel_str(src: *const u8, dest: &mut [u8]) -> Result<usize, c_long> {
|
|
|
|
|
let len = gen::bpf_probe_read_kernel_str(
|
|
|
|
|
dest.as_mut_ptr() as *mut c_void,
|
|
|
|
|
dest.len() as u32,
|
|
|
|
|
src as *const c_void,
|
|
|
|
|
);
|
|
|
|
|
if len < 0 {
|
|
|
|
|
return Err(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let mut len = len as usize;
|
|
|
|
|
if len > dest.len() {
|
|
|
|
|
// this can never happen, it's needed to tell the verifier that len is
|
|
|
|
|
// bounded
|
|
|
|
|
len = dest.len();
|
|
|
|
|
}
|
|
|
|
|
Ok(len as usize)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read the `comm` field associated with the current task struct
|
|
|
|
|
/// as a `[c_char; 16]`.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf:: helpers::bpf_get_current_comm;
|
|
|
|
|
/// let comm = bpf_get_current_comm();
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with comm
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// # Errors
|
|
|
|
|
///
|
|
|
|
|
/// On failure, this function returns a negative value wrapped in an `Err`.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn bpf_get_current_comm() -> Result<[c_char; 16], c_long> {
|
|
|
|
|
let mut comm: [c_char; 16usize] = [0; 16];
|
|
|
|
@ -51,6 +287,29 @@ pub fn bpf_get_current_comm() -> Result<[c_char; 16], c_long> {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Read the process id and thread group id associated with the current task struct as
|
|
|
|
|
/// a `u64`.
|
|
|
|
|
///
|
|
|
|
|
/// In the return value, the upper 32 bits are the `tgid`, and the lower 32 bits are the
|
|
|
|
|
/// `pid`. That is, the returned value is equal to: `(tgid << 32) | pid`. A caller may
|
|
|
|
|
/// access the individual fields by either casting to a `u32` or performing a `>> 32` bit
|
|
|
|
|
/// shift and casting to a `u32`.
|
|
|
|
|
///
|
|
|
|
|
/// Note that the naming conventions used in the kernel differ from user space. From the
|
|
|
|
|
/// perspective of user space, `pid` may be thought of as the thread id, and `tgid` may be
|
|
|
|
|
/// thought of as the process id. For single-threaded processes, these values are
|
|
|
|
|
/// typically the same.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```no_run
|
|
|
|
|
/// # #![allow(dead_code)]
|
|
|
|
|
/// # use aya_bpf:: helpers::bpf_get_current_pid_tgid;
|
|
|
|
|
/// let tgid = (bpf_get_current_pid_tgid() >> 32) as u32;
|
|
|
|
|
/// let pid = bpf_get_current_pid_tgid() as u32;
|
|
|
|
|
///
|
|
|
|
|
/// // Do something with pid and tgid
|
|
|
|
|
/// ```
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn bpf_get_current_pid_tgid() -> u64 {
|
|
|
|
|
unsafe { gen::bpf_get_current_pid_tgid() }
|
|
|
|
|