You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
aya/test/integration-test/src/tests/ring_buf.rs

418 lines
14 KiB
Rust

use std::{
mem,
os::fd::AsRawFd as _,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
thread,
};
use anyhow::Context as _;
use assert_matches::assert_matches;
use aya::{
maps::{array::PerCpuArray, ring_buf::RingBuf, MapData},
programs::UProbe,
Ebpf, EbpfLoader,
};
use aya_obj::generated::BPF_RINGBUF_HDR_SZ;
use integration_common::ring_buf::Registers;
use rand::Rng as _;
use test_log::test;
use tokio::{
io::unix::AsyncFd,
time::{sleep, Duration},
};
struct RingBufTest {
_bpf: Ebpf,
ring_buf: RingBuf<MapData>,
regs: PerCpuArray<MapData, Registers>,
}
// Note that it is important for this test that RING_BUF_MAX_ENTRIES ends up creating a ring buffer
// that is exactly a power-of-two multiple of the page size. The synchronous test will fail if
// that's not the case because the actual size will be rounded up, and fewer entries will be dropped
// than expected.
const RING_BUF_MAX_ENTRIES: usize = 512;
impl RingBufTest {
fn new() -> Self {
const RING_BUF_BYTE_SIZE: u32 =
(RING_BUF_MAX_ENTRIES * (mem::size_of::<u64>() + BPF_RINGBUF_HDR_SZ as usize)) as u32;
// Use the loader API to control the size of the ring_buf.
let mut bpf = EbpfLoader::new()
.set_max_entries("RING_BUF", RING_BUF_BYTE_SIZE)
.load(crate::RING_BUF)
.unwrap();
let ring_buf = bpf.take_map("RING_BUF").unwrap();
let ring_buf = RingBuf::try_from(ring_buf).unwrap();
let regs = bpf.take_map("REGISTERS").unwrap();
let regs = PerCpuArray::<_, Registers>::try_from(regs).unwrap();
let prog: &mut UProbe = bpf
.program_mut("ring_buf_test")
.unwrap()
.try_into()
.unwrap();
prog.load().unwrap();
prog.attach(
Some("ring_buf_trigger_ebpf_program"),
0,
"/proc/self/exe",
None,
)
.unwrap();
Self {
_bpf: bpf,
ring_buf,
regs,
}
}
}
struct WithData(RingBufTest, Vec<u64>);
impl WithData {
fn new(n: usize) -> Self {
Self(RingBufTest::new(), {
let mut rng = rand::thread_rng();
std::iter::repeat_with(|| rng.gen()).take(n).collect()
})
}
}
#[test_case::test_case(0; "write zero items")]
#[test_case::test_case(1; "write one item")]
#[test_case::test_case(RING_BUF_MAX_ENTRIES / 2; "write half the capacity items")]
#[test_case::test_case(RING_BUF_MAX_ENTRIES - 1; "write one less than capacity items")]
#[test_case::test_case(RING_BUF_MAX_ENTRIES * 8; "write more items than capacity")]
fn ring_buf(n: usize) {
let WithData(
RingBufTest {
mut ring_buf,
regs,
_bpf,
},
data,
) = WithData::new(n);
// Note that after expected_capacity has been submitted, reserve calls in the probe will fail
// and the probe will give up.
let expected_capacity = RING_BUF_MAX_ENTRIES - 1;
// Call the function that the uprobe is attached to with the data.
let mut expected = Vec::new();
let mut expected_rejected = 0u64;
let mut expected_dropped = 0u64;
for (i, &v) in data.iter().enumerate() {
ring_buf_trigger_ebpf_program(v);
if i >= expected_capacity {
expected_dropped += 1;
} else if v % 2 == 0 {
expected.push(v);
} else {
expected_rejected += 1;
}
}
let mut seen = Vec::<u64>::new();
while seen.len() < expected.len() {
if let Some(read) = ring_buf.next() {
let read: [u8; 8] = (*read)
.try_into()
.with_context(|| format!("data: {:?}", read.len()))
.unwrap();
let arg = u64::from_ne_bytes(read);
assert_eq!(arg % 2, 0, "got {arg} from probe");
seen.push(arg);
}
}
// Make sure that there is nothing else in the ring_buf.
assert_matches!(ring_buf.next(), None);
// Ensure that the data that was read matches what was passed, and the rejected count was set
// properly.
assert_eq!(seen, expected);
let Registers { dropped, rejected } = regs.get(&0, 0).unwrap().iter().sum();
assert_eq!(dropped, expected_dropped);
assert_eq!(rejected, expected_rejected);
}
#[no_mangle]
#[inline(never)]
pub extern "C" fn ring_buf_trigger_ebpf_program(arg: u64) {
std::hint::black_box(arg);
}
// This test differs from the other async test in that it's possible for the producer
// to fill the ring_buf. We just ensure that the number of events we see is sane given
// what the producer sees, and that the logic does not hang. This exercises interleaving
// discards, successful commits, and drops due to the ring_buf being full.
#[test(tokio::test(flavor = "multi_thread"))]
async fn ring_buf_async_with_drops() {
let WithData(
RingBufTest {
ring_buf,
regs,
_bpf,
},
data,
) = WithData::new(RING_BUF_MAX_ENTRIES * 8);
let mut async_fd = AsyncFd::new(ring_buf).unwrap();
// Spawn the writer which internally will spawn many parallel writers.
// Construct an AsyncFd from the RingBuf in order to receive readiness notifications.
let mut seen = 0;
let mut process_ring_buf = |ring_buf: &mut RingBuf<_>| {
while let Some(read) = ring_buf.next() {
let read: [u8; 8] = (*read)
.try_into()
.with_context(|| format!("data: {:?}", read.len()))
.unwrap();
let arg = u64::from_ne_bytes(read);
assert_eq!(arg % 2, 0, "got {arg} from probe");
seen += 1;
}
};
use futures::future::{
select,
Either::{Left, Right},
};
let writer = futures::future::try_join_all(data.chunks(8).map(ToOwned::to_owned).map(|v| {
tokio::spawn(async {
for value in v {
ring_buf_trigger_ebpf_program(value);
}
})
}));
let readable = {
let mut writer = writer;
loop {
let readable = Box::pin(async_fd.readable_mut());
writer = match select(readable, writer).await {
Left((guard, writer)) => {
let mut guard = guard.unwrap();
process_ring_buf(guard.get_inner_mut());
guard.clear_ready();
writer
}
Right((writer, readable)) => {
writer.unwrap();
break readable;
}
}
}
};
// If there's more to read, we should receive a readiness notification in a timely manner.
// If we don't then, then assert that there's nothing else to read. Note that it's important
// to wait some time before attempting to read, otherwise we may catch up with the producer
// before epoll has an opportunity to send a notification; our consumer thread can race
// with the kernel epoll check.
let sleep_fut = sleep(Duration::from_millis(10));
tokio::pin!(sleep_fut);
match select(sleep_fut, readable).await {
Left(((), _)) => {}
Right((guard, _)) => {
let mut guard = guard.unwrap();
process_ring_buf(guard.get_inner_mut());
guard.clear_ready();
}
}
// Make sure that there is nothing else in the ring_buf.
assert_matches!(async_fd.into_inner().next(), None);
let max_dropped: u64 = u64::try_from(
data.len()
.checked_sub(RING_BUF_MAX_ENTRIES - 1)
.unwrap_or_default(),
)
.unwrap();
let max_seen = u64::try_from(data.iter().filter(|v| *v % 2 == 0).count()).unwrap();
let max_rejected = u64::try_from(data.len()).unwrap() - max_seen;
let Registers { dropped, rejected } = regs.get(&0, 0).unwrap().iter().sum();
let total = u64::try_from(data.len()).unwrap();
let min_seen = max_seen.checked_sub(max_dropped).unwrap_or_default();
let min_rejected = max_rejected.checked_sub(dropped).unwrap_or_default();
let facts = format!(
"seen={seen}, rejected={rejected}, dropped={dropped}, total={total}, max_seen={max_seen}, \
max_rejected={max_rejected}, max_dropped={max_dropped}",
);
assert_eq!(seen + rejected + dropped, total, "{facts}",);
assert!(
(0u64..=max_dropped).contains(&dropped),
"dropped={dropped} not in 0..={max_dropped}; {facts}",
);
assert!(
(min_rejected..=max_rejected).contains(&rejected),
"rejected={rejected} not in {min_rejected}..={max_rejected}; {facts}",
);
assert!(
(min_seen..=max_seen).contains(&seen),
"seen={seen} not in {min_seen}..={max_seen}, rejected={rejected}; {facts}",
);
}
#[test(tokio::test(flavor = "multi_thread"))]
async fn ring_buf_async_no_drop() {
let WithData(
RingBufTest {
ring_buf,
regs,
_bpf,
},
data,
) = WithData::new(RING_BUF_MAX_ENTRIES * 3);
let writer = {
let data = data.to_owned();
tokio::spawn(async move {
for value in data {
// Sleep a tad so we feel confident that the consumer will keep up
// and no messages will be dropped.
let dur = Duration::from_nanos(rand::thread_rng().gen_range(0..10));
sleep(dur).await;
ring_buf_trigger_ebpf_program(value);
}
})
};
// Construct an AsyncFd from the RingBuf in order to receive readiness notifications.
let mut async_fd = AsyncFd::new(ring_buf).unwrap();
// Note that unlike in the synchronous case where all of the entries are written before any of
// them are read, in this case we expect all of the entries to make their way to userspace
// because entries are being consumed as they are produced.
let expected: Vec<u64> = data.iter().cloned().filter(|v| *v % 2 == 0).collect();
let expected_len = expected.len();
let reader = async move {
let mut seen = Vec::with_capacity(expected_len);
while seen.len() < expected_len {
let mut guard = async_fd.readable_mut().await.unwrap();
let ring_buf = guard.get_inner_mut();
while let Some(read) = ring_buf.next() {
let read: [u8; 8] = (*read)
.try_into()
.with_context(|| format!("data: {:?}", read.len()))
.unwrap();
let arg = u64::from_ne_bytes(read);
seen.push(arg);
}
guard.clear_ready();
}
(seen, async_fd.into_inner())
};
let (writer, (seen, mut ring_buf)) = futures::future::join(writer, reader).await;
writer.unwrap();
// Make sure that there is nothing else in the ring_buf.
assert_matches!(ring_buf.next(), None);
// Ensure that the data that was read matches what was passed.
assert_eq!(&seen, &expected);
let Registers { dropped, rejected } = regs.get(&0, 0).unwrap().iter().sum();
assert_eq!(dropped, 0);
assert_eq!(rejected, (data.len() - expected.len()).try_into().unwrap());
}
// This test reproduces a bug where the ring buffer would not be notified of new entries if the
// state was not properly synchronized between the producer and consumer. This would result in the
// consumer never being woken up and the test hanging.
#[test]
fn ring_buf_epoll_wakeup() {
let RingBufTest {
mut ring_buf,
_bpf,
regs: _,
} = RingBufTest::new();
let epoll_fd = epoll::create(false).unwrap();
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
ring_buf.as_raw_fd(),
// The use of EPOLLET is intentional. Without it, level-triggering would result in
// more notifications, and would mask the underlying bug this test reproduced when
// the synchronization logic in the RingBuf mirrored that of libbpf. Also, tokio's
// AsyncFd always uses this flag (as demonstrated in the subsequent test).
epoll::Event::new(epoll::Events::EPOLLIN | epoll::Events::EPOLLET, 0),
)
.unwrap();
let mut epoll_event_buf = [epoll::Event::new(epoll::Events::EPOLLIN, 0); 1];
let mut total_events: u64 = 0;
let writer = WriterThread::spawn();
while total_events < WriterThread::NUM_MESSAGES {
epoll::wait(epoll_fd, -1, &mut epoll_event_buf).unwrap();
while let Some(read) = ring_buf.next() {
assert_eq!(read.len(), 8);
total_events += 1;
}
}
writer.join();
}
// This test is like the above test but uses tokio and AsyncFd instead of raw epoll.
#[test(tokio::test)]
async fn ring_buf_asyncfd_events() {
let RingBufTest {
ring_buf,
regs: _,
_bpf,
} = RingBufTest::new();
let mut async_fd = AsyncFd::new(ring_buf).unwrap();
let mut total_events = 0;
let writer = WriterThread::spawn();
while total_events < WriterThread::NUM_MESSAGES {
let mut guard = async_fd.readable_mut().await.unwrap();
let rb = guard.get_inner_mut();
while let Some(read) = rb.next() {
assert_eq!(read.len(), 8);
total_events += 1;
}
guard.clear_ready();
}
writer.join();
}
// WriterThread triggers the ring_buf write continuously until the join() method is called. It is
// used by both the epoll and async fd test that need frequent writes to the ring buffer to trigger
// the memory synchronization bug that was fixed.
struct WriterThread {
thread: thread::JoinHandle<()>,
done: Arc<AtomicBool>,
}
impl WriterThread {
// When the ring buffer implementation uses Ordering::Relaxed to write the consumer position
// rather than Ordering::SeqCst, the test will hang. This number was determined to be large
// enough to tickle that bug on a hardware accelerated VM with 2 vCPUs.
const NUM_MESSAGES: u64 = 20_000;
fn spawn() -> Self {
let done = Arc::new(AtomicBool::new(false));
Self {
thread: {
let done = done.clone();
thread::spawn(move || {
while !done.load(Ordering::Relaxed) {
// Write 0 which is even and won't be rejected.
ring_buf_trigger_ebpf_program(0);
}
})
},
done,
}
}
fn join(self) {
let Self { thread, done } = self;
done.store(true, Ordering::Relaxed);
thread.join().unwrap();
}
}