You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
memflow-pcileech/src/fpga.rs

801 lines
28 KiB
Rust

// TODO: unpub?
pub mod tlps;
use tlps::*;
use crate::ft60x::*;
use core::mem::MaybeUninit;
use core::time::Duration;
use log::{info, trace, warn};
use memflow::{
error::{Error, Result},
size,
};
use c2rust_bitfields::*;
use dataview::Pod;
use pretty_hex::*;
pub const FPGA_CONFIG_CORE: u16 = 0x0003;
pub const FPGA_CONFIG_PCIE: u16 = 0x0001;
pub const FPGA_CONFIG_SPACE_READONLY: u16 = 0x0000;
pub const FPGA_CONFIG_SPACE_READWRITE: u16 = 0x8000;
// TODO: remove unused
#[allow(unused)]
pub struct PhyConfig {
magic: u8, // 8 bit
tp_cfg: u8, // 4 bit
tp: u8, // 4 bit
pub wr: PhyConfigWr, // 16 bits
pub rd: PhyConfigRd, // 32 bits
}
#[repr(C, align(1))]
#[derive(BitfieldStruct, Pod)]
pub struct PhyConfigWr {
#[bitfield(name = "pl_directed_link_auton", ty = "libc::uint8_t", bits = "0..=0")]
#[bitfield(name = "pl_directed_link_change", ty = "libc::uint8_t", bits = "1..=2")]
#[bitfield(name = "pl_directed_link_speed", ty = "libc::uint8_t", bits = "3..=3")]
#[bitfield(name = "pl_directed_link_width", ty = "libc::uint8_t", bits = "4..=5")]
#[bitfield(name = "pl_upstream_prefer_deemph", ty = "libc::uint8_t", bits = "6..=6")]
#[bitfield(name = "pl_transmit_hot_rst", ty = "libc::uint8_t", bits = "7..=7")]
#[bitfield(name = "pl_downstream_deemph_source", ty = "libc::uint8_t", bits = "8..=8")]
buffer: [u8; 2],
}
const _: [(); core::mem::size_of::<PhyConfigWr>()] = [(); 2];
#[repr(C, align(1))]
#[derive(BitfieldStruct, Pod)]
pub struct PhyConfigRd {
#[bitfield(name = "pl_ltssm_state", ty = "libc::uint8_t", bits = "0..=5")]
#[bitfield(name = "pl_rx_pm_state", ty = "libc::uint8_t", bits = "6..=7")]
#[bitfield(name = "pl_tx_pm_state", ty = "libc::uint8_t", bits = "8..=10")]
#[bitfield(name = "pl_initial_link_width", ty = "libc::uint8_t", bits = "11..=13")]
#[bitfield(name = "pl_lane_reversal_mode", ty = "libc::uint8_t", bits = "14..=15")]
#[bitfield(name = "pl_sel_lnk_width", ty = "libc::uint8_t", bits = "16..=17")]
#[bitfield(name = "pl_phy_lnk_up", ty = "libc::uint8_t", bits = "18..=18")]
#[bitfield(name = "pl_link_gen2_cap", ty = "libc::uint8_t", bits = "19..=19")]
#[bitfield(name = "pl_link_partner_gen2_supported", ty = "libc::uint8_t", bits = "20..=20")]
#[bitfield(name = "pl_link_upcfg_cap", ty = "libc::uint8_t", bits = "21..=21")]
#[bitfield(name = "pl_sel_lnk_rate", ty = "libc::uint8_t", bits = "22..=22")]
#[bitfield(name = "pl_directed_change_done", ty = "libc::uint8_t", bits = "23..=23")]
#[bitfield(name = "pl_received_hot_rst", ty = "libc::uint8_t", bits = "24..=24")]
buffer: [u8; 4],
}
const _: [(); core::mem::size_of::<PhyConfigRd>()] = [(); 4];
pub struct Device {
ft60: FT60x,
}
impl Device {
pub fn new() -> Result<Self> {
let mut ft60 = FT60x::new()?;
ft60.abort_pipe(0x02)?;
ft60.abort_pipe(0x82)?;
ft60.set_suspend_timeout(Duration::new(0, 0))?;
// check chip configuration
let mut conf = ft60.config()?;
info!(
"ft60x config: fifo_mode={} channel_config={} optional_feature={}",
conf.fifo_mode, conf.channel_config, conf.optional_feature_support
);
if conf.fifo_mode != FifoMode::Mode245 as i8
|| conf.channel_config != ChannelConfig::Config1 as i8
|| conf.optional_feature_support != OptionalFeatureSupport::DisableAll as i16
{
warn!("bad ft60x config, reconfiguring chip");
conf.fifo_mode = FifoMode::Mode245 as i8;
conf.channel_config = ChannelConfig::Config1 as i8;
conf.optional_feature_support = OptionalFeatureSupport::DisableAll as i16;
ft60.set_config(&conf)?;
} else {
info!("ft60x config is valid");
}
Ok(Self { ft60 })
}
/// Restarts the PCIE device
fn reset_core(&mut self) -> Result<()> {
let reset_code: [u8; 2] = [0x00, 0x80];
self.write_config_ex_raw(
0x0002,
reset_code,
reset_code,
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READWRITE,
)?;
std::thread::sleep(Duration::from_millis(1000));
self.ft60 = FT60x::new()?;
Ok(())
}
/// Clears the pipe before starting any new read attempts
pub fn clear_pipe(&mut self) -> Result<()> {
let dummy = [
// dword->qword resynch v4.5+
0x66, 0x66, 0x55, 0x55, 0x66, 0x66, 0x55, 0x55, 0x66, 0x66, 0x55, 0x55, 0x66, 0x66,
0x55, 0x55, // cmd msg: FPGA bitstream version (major.minor) v4
0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x13, 0x77,
// cmd msg: FPGA bitstream version (major) v3
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x03, 0x77,
];
//self.reset_core()?;
self.ft60.write_pipe(&dummy)?;
let mut buf = vec![0u8; size::mb(1)];
if self.ft60.read_pipe(&mut buf[..0x1000])? >= 0x1000 {
if self.ft60.read_pipe(&mut buf)? == buf.len() {
self.reset_core()?;
}
}
Ok(())
}
pub fn read_version(&mut self) -> Result<(u8, u8)> {
let version_major =
self.read_config::<u8>(0x0008, FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY)?;
info!("version_major = {}", version_major);
let version_minor =
self.read_config::<u8>(0x0009, FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY)?;
info!("version_minor={}", version_minor);
Ok((version_major, version_minor))
}
pub fn read_devid(&mut self) -> Result<(u8, u16)> {
let fpga_id =
self.read_config::<u8>(0x000a, FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY)?;
info!("fpga_id={}", fpga_id);
let mut device_id = self
.read_config::<u16>(0x0008, FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY)
.unwrap_or_default();
if device_id == 0 {
info!("pci device_id is unset. checking pcie magic.");
let magic_pcie = self
.read_config::<u16>(0x0000, FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE)
.unwrap_or_default();
info!("magic_pcie={:?}", magic_pcie);
if magic_pcie == 0x6745 {
warn!("failed to get device_id. trying to recover via hot reset");
self.hot_reset().ok();
device_id = self
.read_config::<u16>(0x0008, FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY)
.unwrap_or_default();
}
}
let device_id_le = device_id.to_be();
info!("device_id={:?}", device_id_le);
// swap device_id bytes only on LE systems
Ok((fpga_id, device_id_le))
}
pub fn write_inactivity_timer(&mut self) -> Result<()> {
let inactivity_timer = 0x000186a0u32; // set inactivity timer to 1ms (0x0186a0 * 100MHz) [only later activated on UDP bitstreams]
self.write_config(
0x0008,
inactivity_timer,
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READWRITE,
)
}
pub fn hot_reset(&mut self) -> Result<()> {
warn!("hot resetting the fpga");
let mut wr = self.get_phy_wr()?;
wr.set_pl_transmit_hot_rst(1);
self.set_phy_wr(&wr)?;
std::thread::sleep(Duration::from_millis(250)); // TODO: poll pl_ltssm_state + timeout with failure
wr.set_pl_transmit_hot_rst(0);
self.set_phy_wr(&wr)?;
Ok(())
}
pub fn get_phy(&mut self) -> Result<(PhyConfigWr, PhyConfigRd)> {
Ok((self.get_phy_wr()?, self.get_phy_rd()?))
}
pub fn get_phy_wr(&mut self) -> Result<PhyConfigWr> {
let wr_raw =
self.read_config::<u16>(0x0016, FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE)?;
Ok(PhyConfigWr { buffer: u16::to_le_bytes(wr_raw) })
}
pub fn set_phy_wr(&mut self, wr: &PhyConfigWr) -> Result<()> {
self.write_config(0x0016, u16::from_le_bytes(wr.buffer), FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE)
}
pub fn get_phy_rd(&mut self) -> Result<PhyConfigRd> {
let rd_raw =
self.read_config::<u32>(0x000a, FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY)?;
Ok(PhyConfigRd { buffer: u32::to_le_bytes(rd_raw) })
}
/// Prints out all internal registers of the FPGA to `info!()`
/// In detail this will request the core/pcie readonly and read/write registers
/// and print them out via `info!()`. This is usually useful when debugging any
/// issues with the hardware.
pub fn print_registers(&mut self) -> Result<()> {
info!(
"core read-only registers: {:?}",
self.get_register(FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY)?
.hex_dump()
);
info!(
"core read-write registers: {:?}",
self.get_register(FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READWRITE)?
.hex_dump()
);
info!(
"pcie read-only registers: {:?}",
self.get_register(FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY)?
.hex_dump()
);
info!(
"core read-write registers: {:?}",
self.get_register(FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE)?
.hex_dump()
);
Ok(())
}
fn get_register(&mut self, flags: u16) -> Result<Vec<u8>> {
let size = self.read_config::<u16>(0x0004, flags)?;
info!(
"reading fpga device config register {:x} with a length of {:x} bytes.",
flags, size
);
let mut buf = vec![0u8; size as usize];
self.read_config_into_raw(0x0000, &mut buf[..], flags)?;
Ok(buf)
}
// TODO: implement more config dump options
fn get_pcie_drp(&mut self) {
let read_enable = [0x10, 0x00, 0x10, 0x00, 0x80, 0x02, 0x23, 0x77];
let read_address = [0x00, 0x00, 0xff, 0xff, 0x80, 0x1c, 0x23, 0x77];
let result_meta = [0x00, 0x00, 0x00, 0x00, 0x80, 0x1c, 0x13, 0x77];
let result_data = [0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x13, 0x77];
// create read request
for addr in (0..0x100).step_by(32) {
for dw in (0..32).step_by(2) {}
}
// interpret result
}
// TODO: send_tlp_ ...
/*pub fn send_tlp32(&mut self, tlp: u32, keep_alive: bool, flush: bool) -> Result<()> {
self.send_tlp_raw(tlp.as_bytes(), keep_alive, flush)
}
pub fn send_tlp64(&mut self, tlp: u64, keep_alive: bool, flush: bool) -> Result<()> {
self.send_tlp_raw(tlp.as_bytes(), keep_alive, flush)
}*/
// TODO: this is duplicated code (see config_parse_response)
// https://github.com/ufrisk/LeechCore/blob/master/leechcore/device_fpga.c#L1603
pub fn recv_tlps_64(&mut self, bytes: u32 /* maybe u16? */) -> Result<()> {
let mut respbuf = vec![0u8; 0x4000]; // TEST
self.ft60.read_pipe(&mut respbuf)?;
//let tlps = [0u8; 16+512]; // TLP_RX_MAX_SIZE
//let tlp_num = 0;
let mut tlps = Vec::new();
let view = respbuf.as_data_view();
let mut skip = 0;
for i in (0..respbuf.len()).step_by(32) {
if i + skip >= respbuf.len() {
break;
}
while view.copy::<u32>(i + skip) == 0x55556666 {
trace!("ftdi workaround detected, skipping 4 bytes");
skip += 4;
if i + skip + 32 > respbuf.len() {
return Err(Error::Connector("out of range config read"));
}
}
let mut status = view.copy::<u32>(i + skip);
if status & 0xf0000000 != 0xe0000000 {
trace!("invalid status reply, skipping");
continue;
}
//trace!("parsing tlp data buffer");
let mut tlp_offs = 0;
for _ in 0..7 {
if (status & 0x03) == 0 {
// println!("pcie tlp received :)");
tlps.push(view.copy::<u32>(i + skip + 4 + tlp_offs));
// if(tlps.len() >= TLP_RX_MAX_SIZE / sizeof(DWORD)) { return; }
}
if (status & 0x07) == 4 {
//println!("pcie tlp LAST received :)");
// TODO: dispatch tlp buffer
if tlps.len() >= 3 {
println!("received {} tlps", tlps.len() << 2);
// TODO: transmute tlps buffer to tlp header
} else {
println!("received {} tlps - ERROR, Bad PCIe TLP received", tlps.len() << 2);
}
tlps.clear();
}
tlp_offs += 4;
status >>= 4;
}
}
Ok(())
}
fn read_mem_build_request(bytes: &[u8], keep_alive: bool) -> Result<Vec<u8>> {
// convert slice into [u32] slice which is 4 times smaller
let dwords =
unsafe { std::slice::from_raw_parts(bytes.as_ptr() as *const u32, bytes.len() / 4) };
// tlp buffer constraints
if (bytes.len() & 0x3) != 0 || bytes.len() > 4 * 4 + 128 {
return Err(Error::Connector("tlp buffer is too large"));
}
/*
if(cbTlp && (txbuf_cb + (cbTlp << 1) + (fFlush ? 8 : 0) >= MAX_SIZE_TX)) {
if(!DeviceFPGA_TxTlp(NULL, 0, FALSE, TRUE)) { return FALSE; }
}
*/
// TLP_Print
// create transmit buffer
let mut buf = Vec::new();
for tlp in dwords.iter() {
buf.push(tlp.to_be());
buf.push(0x77000000); // TX TLP
}
// TODO: remove this pop in the algorithm
if !bytes.is_empty() {
buf.pop();
buf.push(0x77040000); // TX TLP VALID LAST
}
if keep_alive {
buf.push(0xffeeddcc);
buf.push(0x77020000);
}
// currently we just flush out every tlp transmission immediately
// and not buffer them internally.
let byte_buf = buf
.iter()
.map(|&t| u32::to_le_bytes(t))
.collect::<Vec<_>>()
.concat();
Ok(byte_buf.to_vec())
}
pub fn read_mem_into_raw(&mut self, addr: u64, size: u64, device_id: u16) -> Result<()> {
// TODO: safety checks
// TODO: split by page and page align
let tlp = if addr < size::gb(4) as u64 {
TlpReadWrite32::new_read(addr as u32, size as u16, 0x0, device_id).as_bytes().to_vec()
} else {
TlpReadWrite64::new_read(addr, size as u16, 0x0, device_id).as_bytes().to_vec()
};
let req = Self::read_mem_build_request(tlp.as_slice(), false)?;
self.ft60.write_pipe(&req)?;
std::thread::sleep(std::time::Duration::from_millis(500));
self.recv_tlps_64(0x1000)?;
/*
let mut readbuf = [0u8; size::kb(128)];
let bytes = self.ft60.read_pipe(&mut readbuf)?;
Self::read_config_parse_response(addr, &readbuf[..bytes], buf, flags)
*/
Ok(())
}
#[allow(clippy::uninit_assumed_init)]
fn read_config<T: Pod>(&mut self, addr: u16, flags: u16) -> Result<T> {
let mut obj: T = unsafe { MaybeUninit::uninit().assume_init() };
self.read_config_into_raw(addr, obj.as_bytes_mut(), flags)?;
Ok(obj)
}
fn read_config_build_request(addr: u16, bytes: u16, flags: u16) -> Vec<u8> {
let mut res = Vec::new();
for a in (addr..addr + bytes).step_by(2) {
let mut req = [0u8; 8];
req[4] = ((a | (flags & 0x8000)) >> 8) as u8;
req[5] = (a & 0xff) as u8;
req[6] = (0x10 | (flags & 0x03)) as u8;
req[7] = 0x77;
res.extend_from_slice(&req);
}
res
}
fn read_config_parse_response(
addr: u16,
respbuf: &[u8],
outbuf: &mut [u8],
flags: u16,
) -> Result<()> {
let view = respbuf.as_data_view();
let mut skip = 0;
for i in (0..respbuf.len()).step_by(32) {
if i + skip >= respbuf.len() {
break;
}
while view.copy::<u32>(i + skip) == 0x55556666 {
//trace!("ftdi workaround detected, skipping 4 bytes");
skip += 4;
if i + skip + 32 > respbuf.len() {
return Err(Error::Connector("out of range config read"));
}
}
let mut status = view.copy::<u32>(i + skip);
if status & 0xf0000000 != 0xe0000000 {
trace!("invalid status reply, skipping");
}
trace!("parsing data buffer");
for j in 0..7 {
let status_flag = (status & 0x0f) == (flags & 0x03) as u32;
status >>= 4; // move to next status
if !status_flag {
//trace!("status source flag does not match source");
continue;
}
let data = view.copy::<u32>(i + skip + 4 + j * 4);
let mut a = (data as u16).to_be(); // only enforce a byteswap if we are on le
a -= (flags & 0x8000) + addr;
if a >= outbuf.len() as u16 {
trace!("address data out of range, skipping");
continue;
}
if a == outbuf.len() as u16 - 1 {
outbuf[a as usize] = ((data >> 16) & 0xff) as u8;
} else {
let b = (((data >> 16) & 0xffff) as u16).to_le_bytes();
outbuf[a as usize] = b[0];
outbuf[a as usize + 1] = b[1];
}
}
}
Ok(())
}
fn read_config_into_raw(&mut self, addr: u16, buf: &mut [u8], flags: u16) -> Result<()> {
if buf.is_empty() || buf.len() > size::kb(4) || addr > size::kb(4) as u16 {
return Err(Error::Connector("invalid config address requested"));
}
let req = Self::read_config_build_request(addr, buf.len() as u16, flags);
self.ft60.write_pipe(&req)?;
let mut readbuf = [0u8; size::kb(128)];
let bytes = self.ft60.read_pipe(&mut readbuf)?;
Self::read_config_parse_response(addr, &readbuf[..bytes], buf, flags)
}
fn write_config<T: Pod>(&mut self, addr: u16, obj: T, flags: u16) -> Result<()> {
self.write_config_raw(addr, obj.as_bytes(), flags)
}
fn write_config_build_request(addr: u16, buf: &[u8], flags: u16) -> Result<Vec<u8>> {
if buf.is_empty() || buf.len() > 0x200 || addr > size::kb(4) as u16 {
return Err(Error::Connector("invalid config address to write"));
}
let mut outbuf = [0u8; 0x800];
let mut ptr = 0;
for i in (0..buf.len()).step_by(2) {
let a = (addr + i as u16) | (flags & 0x8000);
outbuf[ptr] = buf[i as usize]; // byte_value_addr
outbuf[ptr + 1] = if buf.len() == i + 1 {
0
} else {
buf[i as usize + 1]
}; // byte_value_addr + 1
outbuf[ptr + 2] = 0xFF; // byte_mask_addr
outbuf[ptr + 3] = if buf.len() == i + 1 { 0 } else { 0xFF }; // byte_mask_addr + 1
outbuf[ptr + 4] = (a >> 8) as u8; // addr_high = bit[6:0], write_regbank = bit[7]
outbuf[ptr + 5] = (a & 0xFF) as u8; // addr_low
outbuf[ptr + 6] = (0x20 | (flags & 0x03)) as u8; // target = bit[0:1], read = bit[4], write = bit[5]
outbuf[ptr + 7] = 0x77; // MAGIC 0x77
ptr += 8;
}
Ok(outbuf[..ptr].to_vec())
}
fn write_config_raw(&mut self, addr: u16, buf: &[u8], flags: u16) -> Result<()> {
let outbuf = Self::write_config_build_request(addr, buf, flags)?;
self.ft60.write_pipe(&outbuf)
}
fn write_config_ex_build_request(
addr: u16,
buf: [u8; 2],
mask: [u8; 2],
flags: u16,
) -> Result<[u8; 8]> {
let a = (addr as u16) | (flags & 0x8000);
Ok([
buf[0],
buf[1],
mask[0],
mask[1],
(a >> 8) as u8, // addr_high
(a & 0xFF) as u8, // addr_low
(0x20 | (flags & 0x03)) as u8, // target = bit[0:1], read = bit[4], write = bit[5]
0x77, // MAGIC 0x77
])
}
fn write_config_ex_raw(
&mut self,
addr: u16,
buf: [u8; 2],
mask: [u8; 2],
flags: u16,
) -> Result<()> {
let outbuf = Self::write_config_ex_build_request(addr, buf, mask, flags)?;
self.ft60.write_pipe(&outbuf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::mem::size_of;
#[test]
fn test_struct_sizes() {
assert_eq!(size_of::<PhyConfigWr>(), 2);
assert_eq!(size_of::<PhyConfigRd>(), 4);
}
#[test]
fn test_config_read_build_request() {
assert_eq!(
Device::read_config_build_request(
0x0008,
1,
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY
),
[0x0, 0x0, 0x0, 0x0, 0x0, 0x8, 0x13, 0x77]
);
assert_eq!(
Device::read_config_build_request(
0x0009,
1,
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY
),
[0x0, 0x0, 0x0, 0x0, 0x0, 0x9, 0x13, 0x77]
);
assert_eq!(
Device::read_config_build_request(
0x0008,
2,
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY
),
[0x0, 0x0, 0x0, 0x0, 0x0, 0x8, 0x11, 0x77]
);
assert_eq!(
Device::read_config_build_request(
0x0000,
2,
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE
),
[0x0, 0x0, 0x0, 0x0, 0x80, 0x0, 0x11, 0x77]
);
assert_eq!(
Device::read_config_build_request(
0x0016,
2,
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE
),
[0x0, 0x0, 0x0, 0x0, 0x80, 0x16, 0x11, 0x77]
);
assert_eq!(
Device::read_config_build_request(
0x000a,
4,
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY
),
[0x0, 0x0, 0x0, 0x0, 0x0, 0xA, 0x11, 0x77, 0x0, 0x0, 0x0, 0x0, 0x0, 0xC, 0x11, 0x77]
);
}
#[test]
fn test_config_parse_version_major() {
let mut version_major = 0u8;
Device::read_config_parse_response(
0x0008,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 243, 255, 255, 239, 0, 8, 4, 2, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
version_major.as_bytes_mut(),
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY,
)
.unwrap();
assert_eq!(version_major, 4);
}
#[test]
fn test_config_parse_version_minor() {
let mut version_minor = 0u8;
Device::read_config_parse_response(
0x0009,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 243, 255, 255, 239, 0, 9, 2, 1, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
version_minor.as_bytes_mut(),
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY,
)
.unwrap();
assert_eq!(version_minor, 2);
}
#[test]
fn test_config_parse_fpga_id() {
let mut fpga_id = 0u8;
Device::read_config_parse_response(
0x000a,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 243, 255, 255, 239, 0, 10, 1, 0, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
fpga_id.as_bytes_mut(),
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY,
)
.unwrap();
assert_eq!(fpga_id, 1);
}
#[test]
fn test_config_parse_device_id() {
let mut fpga_id = 0u8;
Device::read_config_parse_response(
0x000a,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 243, 255, 255, 239, 0, 10, 1, 0, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
fpga_id.as_bytes_mut(),
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READONLY,
)
.unwrap();
assert_eq!(fpga_id, 1);
}
#[test]
fn test_config_parse_phy_wr() {
let mut wr = 0u16;
Device::read_config_parse_response(
0x0016,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 241, 255, 255, 239, 128, 22, 72, 0, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
wr.as_bytes_mut(),
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READWRITE,
)
.unwrap();
assert_eq!(wr, 0x48);
}
#[test]
fn test_config_parse_phy_rd() {
let mut rd = 0u32;
Device::read_config_parse_response(
0x000a,
&[
102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102, 85, 85, 102, 102,
85, 85, 17, 255, 255, 239, 0, 10, 25, 8, 0, 12, 28, 0, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
],
rd.as_bytes_mut(),
FPGA_CONFIG_PCIE | FPGA_CONFIG_SPACE_READONLY,
)
.unwrap();
assert_eq!(rd, 0x1C0819);
}
#[test]
fn write_config_inactivity_timer() {
let inactivity_timer = 0x000186a0u32; // set inactivity timer to 1ms (0x0186a0 * 100MHz) [only later activated on UDP bitstreams]
let outbuf = Device::write_config_build_request(
0x0008,
inactivity_timer.as_bytes(),
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READWRITE,
)
.unwrap();
assert_eq!(
outbuf,
[160, 134, 255, 255, 128, 8, 35, 119, 1, 0, 255, 255, 128, 10, 35, 119]
);
}
#[test]
fn write_config_core_reset() {
let code: [u8; 2] = [0x00, 0x80];
let outbuf = Device::write_config_ex_build_request(
0x0002,
code,
code,
FPGA_CONFIG_CORE | FPGA_CONFIG_SPACE_READWRITE,
)
.unwrap();
assert_eq!(outbuf, [0, 128, 0, 128, 128, 2, 35, 119,]);
}
#[test]
fn test_read_mem32() {
let tlp = TlpReadWrite32::new_read(0x6000, 0x123, 0x80, 17);
assert_eq!(
Device::read_mem_build_request(&tlp.as_bytes(), false).unwrap(),
[0, 0, 0, 72, 0, 0, 0, 119, 0, 17, 128, 255, 0, 0, 0, 119, 0, 0, 96, 0, 0, 0, 4, 119]
);
}
#[test]
fn test_read_mem64() {
let tlp = TlpReadWrite64::new_read(size::gb(4) as u64 + 0x6000, 0x123, 0x80, 17);
assert_eq!(
Device::read_mem_build_request(&tlp.as_bytes(), false).unwrap(),
[
32, 0, 0, 72, 0, 0, 0, 119, 0, 17, 128, 255, 0, 0, 0, 119, 0, 0, 0, 1, 0, 0, 0,
119, 0, 0, 96, 0, 0, 0, 4, 119
]
);
}
}