Initial BTF support

Still missing a couple of things but the bulk is there
pull/1/head
Alessandro Decina 4 years ago
parent b75efc8efe
commit 08d5fa6059

@ -24,6 +24,39 @@ BPF_TYPES="\
BPF_VARS="\ BPF_VARS="\
BPF_PSEUDO_.* BPF_PSEUDO_.*
BPF_ALU \
BPF_ALU64 \
BPF_LDX \
BPF_ST \
BPF_STX \
BPF_LD \
BPF_K \
BPF_DW \
BPF_W \
BPF_H \
BPF_B
"
BTF_TYPES="\
btf_header \
btf_ext_header \
btf_ext_info \
btf_ext_info_sec \
bpf_core_relo \
bpf_core_relo_kind \
btf_type \
btf_enum \
btf_array \
btf_member \
btf_param \
btf_var \
btf_var_secinfo
"
BTF_VARS="\
BTF_KIND_.*
BTF_INT_.*
" "
PERF_TYPES="\ PERF_TYPES="\
@ -52,6 +85,28 @@ bindgen $LIBBPF_DIR/include/uapi/linux/bpf.h \
done) \ done) \
> $OUTPUT_DIR/bpf_bindings.rs > $OUTPUT_DIR/bpf_bindings.rs
bindgen $LIBBPF_DIR/include/uapi/linux/btf.h \
--no-layout-tests \
--default-enum-style moduleconsts \
$(for ty in $BTF_TYPES; do
echo --whitelist-type "$ty"
done) \
$(for var in $BTF_VARS; do
echo --whitelist-var "$var"
done) \
> $OUTPUT_DIR/btf_bindings.rs
bindgen $LIBBPF_DIR/src/libbpf_internal.h \
--no-layout-tests \
--default-enum-style moduleconsts \
$(for ty in $BTF_TYPES; do
echo --whitelist-type "$ty"
done) \
$(for var in $BTF_VARS; do
echo --whitelist-var "$var"
done) \
> $OUTPUT_DIR/btf_internal_bindings.rs
bindgen include/perf_wrapper.h \ bindgen include/perf_wrapper.h \
--no-layout-tests \ --no-layout-tests \
--default-enum-style moduleconsts \ --default-enum-style moduleconsts \

@ -9,7 +9,7 @@ use thiserror::Error;
use crate::{ use crate::{
generated::bpf_insn, generated::bpf_insn,
maps::{Map, MapError}, maps::{Map, MapError},
obj::{relocate, Object, ParseError, RelocationError}, obj::{Object, ParseError, RelocationError},
programs::{KProbe, Program, ProgramData, ProgramError, SocketFilter, TracePoint, UProbe, Xdp}, programs::{KProbe, Program, ProgramData, ProgramError, SocketFilter, TracePoint, UProbe, Xdp},
syscalls::bpf_map_update_elem_ptr, syscalls::bpf_map_update_elem_ptr,
}; };
@ -68,7 +68,7 @@ impl Bpf {
maps.push(map); maps.push(map);
} }
relocate(&mut obj, maps.as_slice())?; obj.relocate(maps.as_slice())?;
let programs = obj let programs = obj
.programs .programs

@ -81,6 +81,17 @@ where
} }
} }
} }
pub const BPF_LD: u32 = 0;
pub const BPF_LDX: u32 = 1;
pub const BPF_ST: u32 = 2;
pub const BPF_STX: u32 = 3;
pub const BPF_ALU: u32 = 4;
pub const BPF_W: u32 = 0;
pub const BPF_H: u32 = 8;
pub const BPF_B: u32 = 16;
pub const BPF_K: u32 = 0;
pub const BPF_ALU64: u32 = 7;
pub const BPF_DW: u32 = 24;
pub const BPF_PSEUDO_MAP_FD: u32 = 1; pub const BPF_PSEUDO_MAP_FD: u32 = 1;
pub const BPF_PSEUDO_MAP_VALUE: u32 = 2; pub const BPF_PSEUDO_MAP_VALUE: u32 = 2;
pub const BPF_PSEUDO_BTF_ID: u32 = 3; pub const BPF_PSEUDO_BTF_ID: u32 = 3;

@ -0,0 +1,90 @@
/* automatically generated by rust-bindgen 0.55.1 */
pub const BTF_KIND_UNKN: u32 = 0;
pub const BTF_KIND_INT: u32 = 1;
pub const BTF_KIND_PTR: u32 = 2;
pub const BTF_KIND_ARRAY: u32 = 3;
pub const BTF_KIND_STRUCT: u32 = 4;
pub const BTF_KIND_UNION: u32 = 5;
pub const BTF_KIND_ENUM: u32 = 6;
pub const BTF_KIND_FWD: u32 = 7;
pub const BTF_KIND_TYPEDEF: u32 = 8;
pub const BTF_KIND_VOLATILE: u32 = 9;
pub const BTF_KIND_CONST: u32 = 10;
pub const BTF_KIND_RESTRICT: u32 = 11;
pub const BTF_KIND_FUNC: u32 = 12;
pub const BTF_KIND_FUNC_PROTO: u32 = 13;
pub const BTF_KIND_VAR: u32 = 14;
pub const BTF_KIND_DATASEC: u32 = 15;
pub const BTF_KIND_MAX: u32 = 15;
pub const BTF_INT_SIGNED: u32 = 1;
pub const BTF_INT_CHAR: u32 = 2;
pub const BTF_INT_BOOL: u32 = 4;
pub type __u8 = ::std::os::raw::c_uchar;
pub type __u16 = ::std::os::raw::c_ushort;
pub type __s32 = ::std::os::raw::c_int;
pub type __u32 = ::std::os::raw::c_uint;
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_header {
pub magic: __u16,
pub version: __u8,
pub flags: __u8,
pub hdr_len: __u32,
pub type_off: __u32,
pub type_len: __u32,
pub str_off: __u32,
pub str_len: __u32,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct btf_type {
pub name_off: __u32,
pub info: __u32,
pub __bindgen_anon_1: btf_type__bindgen_ty_1,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub union btf_type__bindgen_ty_1 {
pub size: __u32,
pub type_: __u32,
_bindgen_union_align: u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_enum {
pub name_off: __u32,
pub val: __s32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_array {
pub type_: __u32,
pub index_type: __u32,
pub nelems: __u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_member {
pub name_off: __u32,
pub type_: __u32,
pub offset: __u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_param {
pub name_off: __u32,
pub type_: __u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_var {
pub linkage: __u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_var_secinfo {
pub type_: __u32,
pub offset: __u32,
pub size: __u32,
}

@ -0,0 +1,86 @@
/* automatically generated by rust-bindgen 0.55.1 */
#[repr(C)]
#[derive(Default)]
pub struct __IncompleteArrayField<T>(::std::marker::PhantomData<T>, [T; 0]);
impl<T> __IncompleteArrayField<T> {
#[inline]
pub const fn new() -> Self {
__IncompleteArrayField(::std::marker::PhantomData, [])
}
#[inline]
pub fn as_ptr(&self) -> *const T {
self as *const _ as *const T
}
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
self as *mut _ as *mut T
}
#[inline]
pub unsafe fn as_slice(&self, len: usize) -> &[T] {
::std::slice::from_raw_parts(self.as_ptr(), len)
}
#[inline]
pub unsafe fn as_mut_slice(&mut self, len: usize) -> &mut [T] {
::std::slice::from_raw_parts_mut(self.as_mut_ptr(), len)
}
}
impl<T> ::std::fmt::Debug for __IncompleteArrayField<T> {
fn fmt(&self, fmt: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
fmt.write_str("__IncompleteArrayField")
}
}
pub type __u8 = ::std::os::raw::c_uchar;
pub type __u16 = ::std::os::raw::c_ushort;
pub type __u32 = ::std::os::raw::c_uint;
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_ext_info {
pub info: *mut ::std::os::raw::c_void,
pub rec_size: __u32,
pub len: __u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct btf_ext_header {
pub magic: __u16,
pub version: __u8,
pub flags: __u8,
pub hdr_len: __u32,
pub func_info_off: __u32,
pub func_info_len: __u32,
pub line_info_off: __u32,
pub line_info_len: __u32,
pub core_relo_off: __u32,
pub core_relo_len: __u32,
}
#[repr(C)]
#[derive(Debug)]
pub struct btf_ext_info_sec {
pub sec_name_off: __u32,
pub num_info: __u32,
pub data: __IncompleteArrayField<__u8>,
}
pub mod bpf_core_relo_kind {
pub type Type = ::std::os::raw::c_uint;
pub const BPF_FIELD_BYTE_OFFSET: Type = 0;
pub const BPF_FIELD_BYTE_SIZE: Type = 1;
pub const BPF_FIELD_EXISTS: Type = 2;
pub const BPF_FIELD_SIGNED: Type = 3;
pub const BPF_FIELD_LSHIFT_U64: Type = 4;
pub const BPF_FIELD_RSHIFT_U64: Type = 5;
pub const BPF_TYPE_ID_LOCAL: Type = 6;
pub const BPF_TYPE_ID_TARGET: Type = 7;
pub const BPF_TYPE_EXISTS: Type = 8;
pub const BPF_TYPE_SIZE: Type = 9;
pub const BPF_ENUMVAL_EXISTS: Type = 10;
pub const BPF_ENUMVAL_VALUE: Type = 11;
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct bpf_core_relo {
pub insn_off: __u32,
pub type_id: __u32,
pub access_str_off: __u32,
pub kind: bpf_core_relo_kind::Type,
}

@ -3,7 +3,11 @@
// FIXME: generate for x86_64 and aarch64 // FIXME: generate for x86_64 and aarch64
mod bpf_bindings; mod bpf_bindings;
mod btf_bindings;
mod btf_internal_bindings;
mod perf_bindings; mod perf_bindings;
pub use bpf_bindings::*; pub use bpf_bindings::*;
pub use btf_bindings::*;
pub use btf_internal_bindings::*;
pub use perf_bindings::*; pub use perf_bindings::*;

@ -0,0 +1,381 @@
use std::{
borrow::Cow,
convert::TryInto,
ffi::{c_void, CStr},
mem, ptr,
};
use thiserror::Error;
use crate::generated::{btf_ext_header, btf_header};
use super::{BtfType, Relocation};
unsafe impl object::pod::Pod for btf_header {}
unsafe impl object::pod::Pod for btf_ext_header {}
pub(crate) const MAX_RESOLVE_DEPTH: u8 = 32;
pub(crate) const MAX_SPEC_LEN: usize = 64;
#[derive(Error, Debug, Clone, Eq, PartialEq)]
pub enum BtfError {
#[error("error parsing BTF header")]
InvalidHeader,
#[error("invalid type info segment")]
InvalidTypeInfo,
#[error("invalid relocation info segment")]
InvalidRelocationInfo,
#[error("invalid BTF type kind `{kind}`")]
InvalidTypeKind { kind: u32 },
#[error("invalid BTF relocation kind `{kind}`")]
InvalidRelocationKind { kind: u32 },
#[error("invalid BTF string offset: {offset}")]
InvalidStringOffset { offset: usize },
#[error("invalid BTF info, offset: {offset} len: {len} section_len: {section_len}")]
InvalidInfo {
offset: usize,
len: usize,
section_len: usize,
},
#[error("invalid BTF line info, offset: {offset} len: {len} section_len: {section_len}")]
InvalidLineInfo {
offset: usize,
len: usize,
section_len: usize,
},
#[error("Unknown BTF type id `{type_id}`")]
UnknownBtfType { type_id: u32 },
#[error("Unexpected BTF type id `{type_id}`")]
UnexpectedBtfType { type_id: u32 },
#[error("maximum depth reached resolving BTF type")]
MaximumTypeDepthReached { type_id: u32 },
}
#[derive(Clone, Debug)]
pub struct Btf {
header: btf_header,
strings: Vec<u8>,
types: Vec<BtfType>,
}
impl Btf {
pub(crate) fn parse(data: &[u8]) -> Result<Btf, BtfError> {
if data.len() < mem::size_of::<btf_header>() {
return Err(BtfError::InvalidHeader);
}
// safety: btf_header is POD so read_unaligned is safe
let header = unsafe { ptr::read_unaligned(data.as_ptr() as *const btf_header) };
let str_off = header.hdr_len as usize + header.str_off as usize;
let str_len = header.str_len as usize;
if str_off + str_len > data.len() {
return Err(BtfError::InvalidHeader);
}
let strings = data[str_off..str_off + str_len].to_vec();
let types = Btf::read_type_info(&header, data)?;
Ok(Btf {
header,
strings,
types,
})
}
fn read_type_info(header: &btf_header, data: &[u8]) -> Result<Vec<BtfType>, BtfError> {
let hdr_len = header.hdr_len as usize;
let type_off = header.type_off as usize;
let type_len = header.type_len as usize;
let base = hdr_len + type_off;
if base + type_len > data.len() {
return Err(BtfError::InvalidTypeInfo);
}
let mut data = &data[base..base + type_len];
let mut types = vec![BtfType::Unknown];
while !data.is_empty() {
// Safety:
// read() reads POD values from ELF, which is sound, but the values can still contain
// internally inconsistent values (like out of bound offsets and such).
let ty = unsafe { BtfType::read(data)? };
data = &data[ty.type_info_size()..];
types.push(ty);
}
Ok(types)
}
pub(crate) fn string_at(&self, offset: u32) -> Result<Cow<'_, str>, BtfError> {
let btf_header {
hdr_len,
mut str_off,
str_len,
..
} = self.header;
str_off += hdr_len;
if offset >= str_off + str_len {
return Err(BtfError::InvalidStringOffset {
offset: offset as usize,
});
}
let offset = offset as usize;
let nul = self.strings[offset..]
.iter()
.position(|c| *c == 0u8)
.ok_or(BtfError::InvalidStringOffset { offset })?;
let s = CStr::from_bytes_with_nul(&self.strings[offset..=offset + nul])
.map_err(|_| BtfError::InvalidStringOffset { offset })?;
Ok(s.to_string_lossy())
}
pub(crate) fn type_by_id(&self, type_id: u32) -> Result<&BtfType, BtfError> {
self.types
.get(type_id as usize)
.ok_or(BtfError::UnknownBtfType { type_id })
}
pub(crate) fn types(&self) -> impl Iterator<Item = &BtfType> {
self.types.iter()
}
pub(crate) fn resolve_type(&self, root_type_id: u32) -> Result<u32, BtfError> {
let mut type_id = root_type_id;
for _ in 0..MAX_RESOLVE_DEPTH {
let ty = self.type_by_id(type_id)?;
use BtfType::*;
match ty {
Volatile(ty) | Const(ty) | Restrict(ty) | Typedef(ty) => {
// Safety: union
type_id = unsafe { ty.__bindgen_anon_1.type_ };
continue;
}
_ => return Ok(type_id),
}
}
Err(BtfError::MaximumTypeDepthReached {
type_id: root_type_id,
})
}
pub(crate) fn type_name(&self, ty: &BtfType) -> Result<Option<Cow<'_, str>>, BtfError> {
ty.name_offset()
.map(|off| Ok(self.string_at(off)?))
.transpose()
}
pub(crate) fn err_type_name(&self, ty: &BtfType) -> Option<String> {
ty.name_offset()
.and_then(|off| self.string_at(off).ok().map(String::from))
}
pub(crate) fn type_size(&self, root_type_id: u32) -> Result<usize, BtfError> {
let mut type_id = root_type_id;
let mut n_elems = 1;
for _ in 0..MAX_RESOLVE_DEPTH {
let ty = self.type_by_id(type_id)?;
use BtfType::*;
let size = match ty {
Int(ty, _) | Struct(ty, _) | Union(ty, _) | Enum(ty, _) | DataSec(ty, _) => {
// Safety: union
unsafe { ty.__bindgen_anon_1.size as usize }
}
Ptr(_) => mem::size_of::<*const c_void>(), // FIXME
Typedef(ty) | Volatile(ty) | Const(ty) | Restrict(ty) | Var(ty, _) => {
// Safety: union
type_id = unsafe { ty.__bindgen_anon_1.type_ };
continue;
}
Array(_, array) => {
n_elems *= array.nelems as usize;
type_id = array.type_;
continue;
}
Unknown | Fwd(_) | Func(_) | FuncProto(_, _) => {
return Err(BtfError::UnexpectedBtfType { type_id })
}
};
return Ok(size * n_elems);
}
Err(BtfError::MaximumTypeDepthReached {
type_id: root_type_id,
})
}
}
#[derive(Debug, Clone)]
pub struct BtfExt {
data: Vec<u8>,
relocations: Vec<(u32, Vec<Relocation>)>,
header: btf_ext_header,
func_info_rec_size: usize,
line_info_rec_size: usize,
core_relo_rec_size: usize,
}
impl BtfExt {
pub(crate) fn parse(data: &[u8]) -> Result<BtfExt, BtfError> {
// Safety: btf_ext_header is POD so read_unaligned is safe
let header = unsafe {
ptr::read_unaligned::<btf_ext_header>(data.as_ptr() as *const btf_ext_header)
};
let rec_size = |offset, len| {
let offset = mem::size_of::<btf_ext_header>() + offset as usize;
let len = len as usize;
// check that there's at least enough space for the `rec_size` field
if (len > 0 && len < 4) || offset + len > data.len() {
return Err(BtfError::InvalidInfo {
offset,
len,
section_len: data.len(),
});
}
Ok(if len > 0 {
/* FIXME: endianness */
u32::from_ne_bytes(data[offset..offset + 4].try_into().unwrap()) as usize
} else {
0
})
};
let btf_ext_header {
func_info_off,
func_info_len,
line_info_off,
line_info_len,
core_relo_off,
core_relo_len,
..
} = header;
let mut ext = BtfExt {
header,
relocations: Vec::new(),
func_info_rec_size: rec_size(func_info_off, func_info_len)?,
line_info_rec_size: rec_size(line_info_off, line_info_len)?,
core_relo_rec_size: rec_size(core_relo_off, core_relo_len)?,
data: data.to_vec(),
};
let rec_size = ext.core_relo_rec_size;
ext.relocations.extend(
SecInfoIter::new(ext.core_relo_data(), ext.core_relo_rec_size)
.map(move |sec| {
let relos = sec
.data
.chunks(rec_size)
.enumerate()
.map(|(n, rec)| unsafe { Relocation::parse(rec, n) })
.collect::<Result<Vec<_>, _>>()?;
Ok((sec.sec_name_off, relos))
})
.collect::<Result<Vec<_>, _>>()?,
);
Ok(ext)
}
fn info_data(&self, offset: u32, len: u32) -> &[u8] {
let offset = (self.header.hdr_len + offset) as usize;
let data = &self.data[offset..offset + len as usize];
if len > 0 {
// skip `rec_size`
&data[4..]
} else {
data
}
}
fn func_info_data(&self) -> &[u8] {
self.info_data(self.header.func_info_off, self.header.func_info_len)
}
fn line_info_data(&self) -> &[u8] {
self.info_data(self.header.line_info_off, self.header.line_info_len)
}
fn core_relo_data(&self) -> &[u8] {
self.info_data(self.header.core_relo_off, self.header.core_relo_len)
}
pub(crate) fn func_info(&self) -> SecInfoIter<'_> {
SecInfoIter::new(self.func_info_data(), self.func_info_rec_size)
}
pub(crate) fn line_info(&self) -> SecInfoIter<'_> {
SecInfoIter::new(self.line_info_data(), self.line_info_rec_size)
}
pub(crate) fn relocations(&self) -> impl Iterator<Item = &(u32, Vec<Relocation>)> {
self.relocations.iter()
}
}
pub(crate) struct SecInfoIter<'a> {
data: &'a [u8],
offset: usize,
rec_size: usize,
}
impl<'a> SecInfoIter<'a> {
fn new(data: &'a [u8], rec_size: usize) -> Self {
Self {
data,
rec_size,
offset: 0,
}
}
}
impl<'a> Iterator for SecInfoIter<'a> {
type Item = SecInfo<'a>;
fn next(&mut self) -> Option<Self::Item> {
let data = self.data;
if self.offset + 8 >= data.len() {
return None;
}
// FIXME: endianness
let sec_name_off =
u32::from_ne_bytes(data[self.offset..self.offset + 4].try_into().unwrap());
self.offset += 4;
let num_info = u32::from_ne_bytes(data[self.offset..self.offset + 4].try_into().unwrap());
self.offset += 4;
let data = &data[self.offset..self.offset + (self.rec_size * num_info as usize)];
self.offset += self.rec_size * num_info as usize;
Some(SecInfo {
sec_name_off,
num_info,
data,
})
}
}
#[derive(Debug)]
pub(crate) struct SecInfo<'a> {
sec_name_off: u32,
num_info: u32,
data: &'a [u8],
}

@ -0,0 +1,7 @@
mod btf;
mod relocation;
mod types;
pub use btf::*;
pub(crate) use relocation::*;
pub(crate) use types::*;

@ -0,0 +1,991 @@
use std::{
collections::HashMap,
convert::{TryFrom, TryInto},
fs, io, mem, ptr,
};
use thiserror::Error;
use crate::{
generated::{
bpf_core_relo, bpf_core_relo_kind::*, bpf_insn, BPF_ALU, BPF_ALU64, BPF_B, BPF_DW, BPF_H,
BPF_K, BPF_LD, BPF_LDX, BPF_ST, BPF_STX, BPF_W, BTF_INT_SIGNED,
},
obj::{
btf::{
fields_are_compatible, member_bit_field_size, member_bit_offset, types_are_compatible,
BtfType, MAX_SPEC_LEN,
},
Btf, BtfError, Object, Program,
},
};
#[derive(Error, Debug)]
pub enum BtfRelocationError {
#[error("{error}")]
BtfError {
#[from]
error: BtfError,
},
#[error("{error}")]
IOError {
#[from]
error: io::Error,
},
#[error("section `{name}` not found")]
SectionNotFound { name: String },
#[error("invalid BTF relocation access string {access_str}")]
InvalidAccessString { access_str: String },
#[error("invalid instruction index #{index} referenced by relocation #{relocation_number} in section `{section_name}`")]
InvalidInstructionIndex {
index: usize,
num_instructions: usize,
section_name: String,
relocation_number: usize,
},
#[error("error relocating {type_name}, multiple candidate target types found with different memory layouts: {candidates:?}")]
ConflictingCandidates {
type_name: String,
candidates: Vec<String>,
},
#[error("maximum nesting level reached evaluating candidate type `{}`", err_type_name(.type_name))]
MaximumNestingLevelReached { type_name: Option<String> },
#[error("invalid access string `{spec}` for type `{}`: {error}", err_type_name(.type_name))]
InvalidAccessIndex {
type_name: Option<String>,
spec: String,
index: usize,
max_index: usize,
error: String,
},
#[error(
"relocation #{relocation_number} of kind `{relocation_kind}` not valid for type `{type_kind}`: {error}"
)]
InvalidRelocationKindForType {
relocation_number: usize,
relocation_kind: String,
type_kind: String,
error: String,
},
#[error(
"instruction #{index} referenced by relocation #{relocation_number} is invalid: {error}"
)]
InvalidInstruction {
relocation_number: usize,
index: usize,
error: String,
},
}
fn err_type_name(name: &Option<String>) -> String {
name.clone().unwrap_or_else(|| "[unknown name]".to_string())
}
#[derive(Copy, Clone, Debug)]
#[repr(u32)]
enum RelocationKind {
FieldByteOffset = BPF_FIELD_BYTE_OFFSET,
FieldByteSize = BPF_FIELD_BYTE_SIZE,
FieldExists = BPF_FIELD_EXISTS,
FieldSigned = BPF_FIELD_SIGNED,
FieldLShift64 = BPF_FIELD_LSHIFT_U64,
FieldRShift64 = BPF_FIELD_RSHIFT_U64,
TypeIdLocal = BPF_TYPE_ID_LOCAL,
TypeIdTarget = BPF_TYPE_ID_TARGET,
TypeExists = BPF_TYPE_EXISTS,
TypeSize = BPF_TYPE_SIZE,
EnumVariantExists = BPF_ENUMVAL_EXISTS,
EnumVariantValue = BPF_ENUMVAL_VALUE,
}
impl TryFrom<u32> for RelocationKind {
type Error = BtfError;
fn try_from(v: u32) -> Result<Self, Self::Error> {
use RelocationKind::*;
Ok(match v {
BPF_FIELD_BYTE_OFFSET => FieldByteOffset,
BPF_FIELD_BYTE_SIZE => FieldByteSize,
BPF_FIELD_EXISTS => FieldExists,
BPF_FIELD_SIGNED => FieldSigned,
BPF_FIELD_LSHIFT_U64 => FieldLShift64,
BPF_FIELD_RSHIFT_U64 => FieldRShift64,
BPF_TYPE_ID_LOCAL => TypeIdLocal,
BPF_TYPE_ID_TARGET => TypeIdTarget,
BPF_TYPE_EXISTS => TypeExists,
BPF_TYPE_SIZE => TypeSize,
BPF_ENUMVAL_EXISTS => EnumVariantExists,
BPF_ENUMVAL_VALUE => EnumVariantValue,
kind => return Err(BtfError::InvalidRelocationKind { kind }),
})
}
}
#[derive(Debug, Copy, Clone)]
pub struct Relocation {
kind: RelocationKind,
ins_offset: usize,
type_id: u32,
access_str_offset: u32,
number: usize,
}
impl Relocation {
#[allow(unused_unsafe)]
pub(crate) unsafe fn parse(data: &[u8], number: usize) -> Result<Relocation, BtfError> {
if mem::size_of::<bpf_core_relo>() > data.len() {
return Err(BtfError::InvalidRelocationInfo);
}
let rel = unsafe { ptr::read_unaligned::<bpf_core_relo>(data.as_ptr() as *const _) };
Ok(Relocation {
kind: rel.kind.try_into()?,
ins_offset: rel.insn_off as usize,
type_id: rel.type_id,
access_str_offset: rel.access_str_off,
number,
})
}
}
impl Object {
pub fn relocate_btf(&mut self) -> Result<(), BtfRelocationError> {
let (local_btf, btf_ext) = match (&self.btf, &self.btf_ext) {
(Some(btf), Some(btf_ext)) => (btf, btf_ext),
_ => return Ok(()),
};
let target_btf = fs::read("/sys/kernel/btf/vmlinux")?;
let target_btf = Btf::parse(&target_btf)?;
let mut candidates_cache = HashMap::<u32, Vec<Candidate>>::new();
for (sec_name_off, relos) in btf_ext.relocations() {
let section_name = local_btf.string_at(*sec_name_off)?;
// FIXME
let parts = section_name.split("/").collect::<Vec<_>>();
if parts.len() < 2 {
continue;
}
let section_name = parts[1];
let program = self.programs.get_mut(section_name).ok_or_else(|| {
BtfRelocationError::SectionNotFound {
name: section_name.to_string(),
}
})?;
for rel in relos {
let instructions = &mut program.instructions;
let ins_index = rel.ins_offset as usize / std::mem::size_of::<bpf_insn>();
if ins_index >= instructions.len() {
return Err(BtfRelocationError::InvalidInstructionIndex {
index: ins_index,
num_instructions: instructions.len(),
section_name: section_name.to_string(),
relocation_number: rel.number,
});
}
let local_ty = local_btf.type_by_id(rel.type_id)?;
let local_name = &*local_btf.type_name(local_ty)?.unwrap();
let access_str = &*local_btf.string_at(rel.access_str_offset)?;
let local_spec = AccessSpec::new(local_btf, rel.type_id, access_str, *rel)?;
let mut matches = match rel.kind {
RelocationKind::TypeIdLocal => Vec::new(), // we don't need to look at target types to relocate this value
_ => {
let candidates = match candidates_cache.get(&rel.type_id) {
Some(cands) => cands,
None => {
candidates_cache.insert(
rel.type_id,
find_candidates(local_ty, local_name, &target_btf)?,
);
candidates_cache.get(&rel.type_id).unwrap()
}
};
let mut matches = Vec::new();
for candidate in candidates {
if let Some(candidate_spec) = match_candidate(&local_spec, candidate)? {
let comp_rel = ComputedRelocation::new(
rel,
&local_spec,
Some(&candidate_spec),
)?;
matches.push((candidate.name.clone(), candidate_spec, comp_rel));
}
}
matches
}
};
let comp_rel = if !matches.is_empty() {
let mut matches = matches.drain(..);
let (_, target_spec, target_comp_rel) = matches.next().unwrap();
// if there's more than one candidate, make sure that they all resolve to the
// same value, else the relocation is ambiguous and can't be applied
let conflicts = matches
.filter_map(|(cand_name, cand_spec, cand_comp_rel)| {
if cand_spec.bit_offset != target_spec.bit_offset
|| cand_comp_rel.target.value != target_comp_rel.target.value
{
Some(cand_name.clone())
} else {
None
}
})
.collect::<Vec<_>>();
if !conflicts.is_empty() {
return Err(BtfRelocationError::ConflictingCandidates {
type_name: local_name.to_string(),
candidates: conflicts,
});
}
target_comp_rel
} else {
// there are no candidate matches and therefore no target_spec. This might mean
// that matching failed, or that the relocation can be applied looking at local
// types only
ComputedRelocation::new(rel, &local_spec, None)?
};
comp_rel.apply(program, rel, section_name, local_btf, &target_btf)?;
}
}
Ok(())
}
}
fn find_candidates<'target>(
local_ty: &BtfType,
local_name: &str,
target_btf: &'target Btf,
) -> Result<Vec<Candidate<'target>>, BtfError> {
let flavorless_name = |name: &str| name.splitn(2, "___").next().unwrap().to_string();
let mut candidates = Vec::new();
let local_name = flavorless_name(local_name);
for (type_id, ty) in target_btf.types().enumerate() {
if local_ty.kind()? != ty.kind()? {
continue;
}
let name = &*target_btf.type_name(ty)?.unwrap();
if local_name != flavorless_name(name) {
continue;
}
candidates.push(Candidate {
name: name.to_owned(),
btf: &target_btf,
ty,
type_id: type_id as u32,
});
}
Ok(candidates)
}
fn match_candidate<'target>(
local_spec: &AccessSpec,
candidate: &'target Candidate,
) -> Result<Option<AccessSpec<'target>>, BtfRelocationError> {
let mut target_spec = AccessSpec {
btf: candidate.btf,
root_type_id: candidate.type_id,
relocation: local_spec.relocation,
parts: Vec::new(),
accessors: Vec::new(),
bit_offset: 0,
};
match local_spec.relocation.kind {
RelocationKind::TypeIdLocal
| RelocationKind::TypeIdTarget
| RelocationKind::TypeExists
| RelocationKind::TypeSize => {
if types_are_compatible(
local_spec.btf,
local_spec.root_type_id,
candidate.btf,
candidate.type_id,
)? {
return Ok(Some(target_spec));
} else {
return Ok(None);
}
}
RelocationKind::EnumVariantExists | RelocationKind::EnumVariantValue => todo!(),
RelocationKind::FieldByteOffset
| RelocationKind::FieldByteSize
| RelocationKind::FieldExists
| RelocationKind::FieldSigned
| RelocationKind::FieldLShift64
| RelocationKind::FieldRShift64 => {
let mut target_id = candidate.type_id;
for accessor in &local_spec.accessors {
target_id = candidate.btf.resolve_type(target_id)?;
if accessor.name.is_some() {
if let Some(next_id) = match_member(
local_spec.btf,
&local_spec,
accessor,
candidate.btf,
target_id,
&mut target_spec,
)? {
target_id = next_id;
} else {
return Ok(None);
}
} else {
// array access
if target_spec.parts.len() == MAX_SPEC_LEN {
return Err(BtfRelocationError::MaximumNestingLevelReached {
type_name: Some(candidate.name.clone()),
});
}
target_spec.parts.push(accessor.index);
target_spec.accessors.push(Accessor {
index: accessor.index,
type_id: target_id,
name: None,
});
target_spec.bit_offset +=
accessor.index * candidate.btf.type_size(target_id)? * 8;
}
}
}
};
Ok(Some(target_spec))
}
fn match_member<'local, 'target>(
local_btf: &Btf,
local_spec: &AccessSpec<'local>,
local_accessor: &Accessor,
target_btf: &'target Btf,
target_id: u32,
target_spec: &mut AccessSpec<'target>,
) -> Result<Option<u32>, BtfRelocationError> {
let local_ty = local_btf.type_by_id(local_accessor.type_id)?;
let local_member = match local_ty {
BtfType::Struct(_, members) | BtfType::Union(_, members) => {
// this won't panic, bounds are checked when local_spec is built in AccessSpec::new
members[local_accessor.index]
}
_ => panic!("bug! this should only be called for structs and unions"),
};
let local_name = &*local_btf.string_at(local_member.name_off)?;
let target_id = target_btf.resolve_type(target_id)?;
let target_ty = target_btf.type_by_id(target_id)?;
let target_members = match target_ty {
BtfType::Struct(ty, members) | BtfType::Union(ty, members) => members,
// not a fields type, no match
_ => return Ok(None),
};
for (index, target_member) in target_members.iter().enumerate() {
if target_spec.parts.len() == MAX_SPEC_LEN {
let root_ty = target_spec.btf.type_by_id(target_spec.root_type_id)?;
return Err(BtfRelocationError::MaximumNestingLevelReached {
type_name: target_spec.btf.err_type_name(root_ty),
});
}
let bit_offset = member_bit_offset(target_ty.info().unwrap(), target_member);
let target_name = &*target_btf.string_at(target_member.name_off)?;
if target_name == "" {
let ret = match_member(
local_btf,
local_spec,
local_accessor,
target_btf,
target_member.type_,
target_spec,
)?;
if ret.is_some() {
target_spec.bit_offset += bit_offset;
target_spec.parts.push(index);
return Ok(ret);
}
} else if local_name == target_name {
if fields_are_compatible(
local_spec.btf,
local_member.type_,
target_btf,
target_member.type_,
)? {
target_spec.bit_offset += bit_offset;
target_spec.parts.push(index);
target_spec.accessors.push(Accessor {
type_id: target_id,
index,
name: Some(target_name.to_owned()),
});
return Ok(Some(target_member.type_));
} else {
return Ok(None);
}
}
}
Ok(None)
}
#[derive(Debug)]
struct AccessSpec<'a> {
btf: &'a Btf,
root_type_id: u32,
parts: Vec<usize>,
accessors: Vec<Accessor>,
relocation: Relocation,
bit_offset: usize,
}
impl<'a> AccessSpec<'a> {
fn new(
btf: &'a Btf,
root_type_id: u32,
spec: &str,
relocation: Relocation,
) -> Result<AccessSpec<'a>, BtfRelocationError> {
let parts = spec
.split(":")
.map(|s| s.parse::<usize>())
.collect::<Result<Vec<_>, _>>()
.map_err(|_| BtfRelocationError::InvalidAccessString {
access_str: spec.to_string(),
})?;
let mut type_id = btf.resolve_type(root_type_id)?;
let ty = btf.type_by_id(type_id)?;
let spec = match relocation.kind {
RelocationKind::TypeIdLocal
| RelocationKind::TypeIdTarget
| RelocationKind::TypeExists
| RelocationKind::TypeSize => {
if parts != [0] {
return Err(BtfRelocationError::InvalidAccessString {
access_str: spec.to_string(),
});
}
AccessSpec {
btf,
root_type_id,
relocation,
parts,
accessors: Vec::new(),
bit_offset: 0,
}
}
RelocationKind::EnumVariantExists | RelocationKind::EnumVariantValue => match ty {
BtfType::Enum(_, members) => {
if parts.len() != 1 {
return Err(BtfRelocationError::InvalidAccessString {
access_str: spec.to_string(),
});
}
let index = parts[0];
if index >= members.len() {
return Err(BtfRelocationError::InvalidAccessIndex {
type_name: btf.err_type_name(ty),
spec: spec.to_string(),
index: index,
max_index: members.len(),
error: "tried to access nonexistant enum variant".to_string(),
});
}
let accessors = vec![Accessor {
type_id,
index,
name: btf.type_name(ty)?.map(String::from),
}];
AccessSpec {
btf,
root_type_id,
relocation,
parts,
accessors,
bit_offset: 0,
}
}
_ => {
return Err(BtfRelocationError::InvalidRelocationKindForType {
relocation_number: relocation.number,
relocation_kind: format!("{:?}", relocation.kind),
type_kind: format!("{:?}", ty.kind()?.unwrap()),
error: "enum relocation on non-enum type".to_string(),
})
}
},
RelocationKind::FieldByteOffset
| RelocationKind::FieldByteSize
| RelocationKind::FieldExists
| RelocationKind::FieldSigned
| RelocationKind::FieldLShift64
| RelocationKind::FieldRShift64 => {
let mut accessors = vec![Accessor {
type_id,
index: parts[0],
name: None,
}];
let mut bit_offset = accessors[0].index as usize * btf.type_size(type_id)?;
for index in parts.iter().skip(1).cloned() {
type_id = btf.resolve_type(type_id)?;
let ty = btf.type_by_id(type_id)?;
use BtfType::*;
match ty {
Struct(t, members) | Union(t, members) => {
if index >= members.len() {
return Err(BtfRelocationError::InvalidAccessIndex {
type_name: btf.err_type_name(ty),
spec: spec.to_string(),
index: index,
max_index: members.len(),
error: "out of bounds struct or union access".to_string(),
});
}
let member = members[index];
bit_offset += member_bit_offset(t.info, &member);
if member.name_off != 0 {
accessors.push(Accessor {
type_id,
index,
name: Some(btf.string_at(member.name_off)?.to_string()),
});
}
type_id = member.type_;
}
Array(_, array) => {
type_id = btf.resolve_type(array.type_)?;
let var_len = array.nelems == 0 && {
// an array is potentially variable length if it's the last field
// of the parent struct and has 0 elements
let parent = accessors.last().unwrap();
let parent_ty = btf.type_by_id(parent.type_id)?;
match parent_ty {
Struct(_, members) => index == members.len() - 1,
_ => false,
}
};
if !var_len && index >= array.nelems as usize {
return Err(BtfRelocationError::InvalidAccessIndex {
type_name: btf.err_type_name(ty),
spec: spec.to_string(),
index,
max_index: array.nelems as usize,
error: "array index out of bounds".to_string(),
});
}
accessors.push(Accessor {
type_id,
index,
name: None,
});
let size = btf.type_size(type_id)?;
bit_offset += index * size * 8;
}
rel_kind => {
return Err(BtfRelocationError::InvalidRelocationKindForType {
relocation_number: relocation.number,
relocation_kind: format!("{:?}", rel_kind),
type_kind: format!("{:?}", ty.kind()),
error: "field relocation on a type that doesn't have fields"
.to_string(),
});
}
};
}
AccessSpec {
btf,
root_type_id,
relocation,
parts,
accessors,
bit_offset,
}
}
};
Ok(spec)
}
}
#[derive(Debug)]
struct Accessor {
type_id: u32,
index: usize,
name: Option<String>,
}
#[derive(Debug)]
struct Candidate<'a> {
name: String,
btf: &'a Btf,
ty: &'a BtfType,
type_id: u32,
}
#[derive(Debug)]
struct ComputedRelocation {
local: ComputedRelocationValue,
target: ComputedRelocationValue,
}
#[derive(Debug)]
struct ComputedRelocationValue {
value: u32,
size: u32,
type_id: Option<u32>,
}
impl ComputedRelocation {
fn new(
rel: &Relocation,
local_spec: &AccessSpec,
target_spec: Option<&AccessSpec>,
) -> Result<ComputedRelocation, BtfRelocationError> {
use RelocationKind::*;
let ret = match rel.kind {
FieldByteOffset | FieldByteSize | FieldExists | FieldSigned | FieldLShift64
| FieldRShift64 => ComputedRelocation {
local: Self::compute_field_relocation(rel, Some(local_spec))?,
target: Self::compute_field_relocation(rel, target_spec)?,
},
TypeIdLocal | TypeIdTarget | TypeExists | TypeSize => ComputedRelocation {
local: Self::compute_type_relocation(rel, local_spec, target_spec)?,
target: Self::compute_type_relocation(rel, local_spec, target_spec)?,
},
EnumVariantExists | EnumVariantValue => ComputedRelocation {
local: Self::compute_enum_relocation(rel, Some(local_spec))?,
target: Self::compute_enum_relocation(rel, target_spec)?,
},
};
Ok(ret)
}
fn apply(
&self,
program: &mut Program,
rel: &Relocation,
section_name: &str,
local_btf: &Btf,
target_btf: &Btf,
) -> Result<(), BtfRelocationError> {
let instructions = &mut program.instructions;
let num_instructions = instructions.len();
let ins_index = rel.ins_offset as usize / std::mem::size_of::<bpf_insn>();
let mut ins =
instructions
.get_mut(ins_index)
.ok_or(BtfRelocationError::InvalidInstructionIndex {
index: rel.ins_offset as usize,
num_instructions,
section_name: section_name.to_string(),
relocation_number: rel.number,
})?;
let class = (ins.code & 0x07) as u32;
let target_value = self.target.value;
match class {
BPF_ALU | BPF_ALU64 => {
let src_reg = ins.src_reg();
if src_reg != BPF_K as u8 {
return Err(BtfRelocationError::InvalidInstruction {
relocation_number: rel.number,
index: ins_index,
error: format!("invalid src_reg={:x} expected {:x}", src_reg, BPF_K),
});
}
ins.imm = target_value as i32;
}
BPF_LDX | BPF_ST | BPF_STX => {
if target_value > std::i16::MAX as u32 {
return Err(BtfRelocationError::InvalidInstruction {
relocation_number: rel.number,
index: ins_index,
error: format!("value `{}` overflows 16 bits offset field", target_value),
});
}
ins.off = target_value as i16;
if self.local.size != self.target.size {
let local_ty = local_btf.type_by_id(self.local.type_id.unwrap())?;
let target_ty = target_btf.type_by_id(self.target.type_id.unwrap())?;
let unsigned = |info: u32| ((info >> 24) & 0x0F) & BTF_INT_SIGNED == 0;
use BtfType::*;
match (local_ty, target_ty) {
(Ptr(_), Ptr(_)) => {}
(Int(_, local_info), Int(_, target_info))
if unsigned(*local_info) && unsigned(*target_info) => {}
_ => {
return Err(BtfRelocationError::InvalidInstruction {
relocation_number: rel.number,
index: ins_index,
error: format!(
"original type {} has size {} but target type {} has size {}",
err_type_name(&local_btf.err_type_name(local_ty)),
self.local.size,
err_type_name(&target_btf.err_type_name(target_ty)),
self.target.size,
),
})
}
}
let size = match self.target.size {
8 => BPF_DW,
4 => BPF_W,
2 => BPF_H,
1 => BPF_B,
size => {
return Err(BtfRelocationError::InvalidInstruction {
relocation_number: rel.number,
index: ins_index,
error: format!("invalid target size {}", size),
})
}
} as u8;
ins.code = ins.code & 0xE0 | size | ins.code & 0x07;
}
}
BPF_LD => {
ins.imm = target_value as i32;
let mut next_ins = instructions.get_mut(ins_index + 1).ok_or(
BtfRelocationError::InvalidInstructionIndex {
index: ins_index + 1,
num_instructions,
section_name: section_name.to_string(),
relocation_number: rel.number,
},
)?;
next_ins.imm = 0;
}
class => {
return Err(BtfRelocationError::InvalidInstruction {
relocation_number: rel.number,
index: ins_index,
error: format!("invalid instruction class {:x}", class),
})
}
};
Ok(())
}
fn compute_enum_relocation(
rel: &Relocation,
spec: Option<&AccessSpec>,
) -> Result<ComputedRelocationValue, BtfRelocationError> {
use RelocationKind::*;
let value = match rel.kind {
EnumVariantExists => spec.is_some() as u32,
EnumVariantValue => {
let spec = spec.unwrap();
let accessor = &spec.accessors[0];
match spec.btf.type_by_id(accessor.type_id)? {
BtfType::Enum(_, variants) => variants[accessor.index].val as u32,
_ => panic!("should not be reached"),
}
}
// this function is only called for enum relocations
_ => panic!("should not be reached"),
};
Ok(ComputedRelocationValue {
value,
size: 0,
type_id: None,
})
}
fn compute_field_relocation(
rel: &Relocation,
spec: Option<&AccessSpec>,
) -> Result<ComputedRelocationValue, BtfRelocationError> {
use RelocationKind::*;
if let FieldExists = rel.kind {
// this is the bpf_preserve_field_info(member_access, FIELD_EXISTENCE) case. If we
// managed to build a spec, it means the field exists.
return Ok(ComputedRelocationValue {
value: spec.is_some() as u32,
size: 0,
type_id: None,
});
}
let spec = spec.unwrap();
let accessor = spec.accessors.last().unwrap();
if accessor.name.is_none() {
// the last accessor is unnamed, meaning that this is an array access
return match rel.kind {
FieldByteOffset => Ok(ComputedRelocationValue {
value: (spec.bit_offset / 8) as u32,
size: spec.btf.type_size(accessor.type_id)? as u32,
type_id: Some(accessor.type_id),
}),
FieldByteSize => Ok(ComputedRelocationValue {
value: spec.btf.type_size(accessor.type_id)? as u32,
size: 0,
type_id: Some(accessor.type_id),
}),
rel_kind => {
let ty = spec.btf.type_by_id(accessor.type_id)?;
return Err(BtfRelocationError::InvalidRelocationKindForType {
relocation_number: rel.number,
relocation_kind: format!("{:?}", rel_kind),
type_kind: format!("{:?}", ty.kind()),
error: "invalid relocation kind for array type".to_string(),
});
}
};
}
let ty = spec.btf.type_by_id(accessor.type_id)?;
let (ll_ty, member) = match ty {
BtfType::Struct(ty, members) | BtfType::Union(ty, members) => {
(ty, members[accessor.index])
}
_ => {
return Err(BtfRelocationError::InvalidRelocationKindForType {
relocation_number: rel.number,
relocation_kind: format!("{:?}", rel.kind),
type_kind: format!("{:?}", ty.kind()),
error: "field relocation on a type that doesn't have fields".to_string(),
});
}
};
let bit_off = spec.bit_offset as u32;
let member_type_id = spec.btf.resolve_type(member.type_)?;
let member_ty = spec.btf.type_by_id(member_type_id)?;
let ll_member_ty = member_ty.btf_type().unwrap();
let mut byte_size;
let mut byte_off;
let mut bit_size = member_bit_field_size(ll_ty, &member) as u32;
let is_bitfield = bit_size > 0;
if is_bitfield {
// find out the smallest int size to load the bitfield
byte_size = unsafe { ll_member_ty.__bindgen_anon_1.size };
byte_off = bit_off / 8 / byte_size * byte_size;
while bit_off + bit_size - byte_off * 8 > byte_size * 8 {
if byte_size >= 8 {
// the bitfield is larger than 8 bytes!?
return Err(BtfError::InvalidTypeInfo)?;
}
byte_size *= 2;
byte_off = bit_off / 8 / byte_size * byte_size;
}
} else {
byte_size = spec.btf.type_size(member_type_id)? as u32;
bit_size = byte_size * 8;
byte_off = spec.bit_offset as u32 / 8;
}
let mut value = ComputedRelocationValue {
value: 0,
size: 0,
type_id: None,
};
match rel.kind {
FieldByteOffset => {
value.value = byte_off;
if !is_bitfield {
value.size = byte_size;
value.type_id = Some(member_type_id);
}
}
FieldByteSize => {
value.value = byte_size;
}
FieldSigned => match member_ty {
BtfType::Enum(_, _) => value.value = 1,
BtfType::Int(_, i) => value.value = ((i >> 24) & 0x0F) & BTF_INT_SIGNED,
_ => (),
},
#[cfg(target_endian = "little")]
FieldLShift64 => {
value.value = 64 - (bit_off + bit_size - byte_off * 8);
}
#[cfg(target_endian = "big")]
FieldLShift64 => {
value.value = (8 - byte_size) * 8 + (bit_off - byte_off * 8);
}
FieldRShift64 => {
value.value = 64 - bit_size;
}
FieldExists // this is handled at the start of the function
| _ => panic!("bug! this should not be reached"),
}
Ok(value)
}
fn compute_type_relocation(
rel: &Relocation,
local_spec: &AccessSpec,
target_spec: Option<&AccessSpec>,
) -> Result<ComputedRelocationValue, BtfRelocationError> {
use RelocationKind::*;
let value = match rel.kind {
TypeIdLocal => local_spec.root_type_id,
_ => match target_spec {
Some(target_spec) => match rel.kind {
TypeIdTarget => target_spec.root_type_id,
TypeExists => 1,
TypeSize => target_spec.btf.type_size(target_spec.root_type_id)? as u32,
_ => panic!("bug! this should not be reached"),
},
// FIXME in the case of TypeIdTarget and TypeSize this should probably fail the
// relocation...
None => 0,
},
};
Ok(ComputedRelocationValue {
value,
size: 0,
type_id: None,
})
}
}

@ -0,0 +1,388 @@
use std::{
convert::{TryFrom, TryInto},
mem, ptr,
};
use crate::{
generated::{
btf_array, btf_enum, btf_member, btf_param, btf_type, btf_type__bindgen_ty_1, btf_var,
btf_var_secinfo, BTF_KIND_ARRAY, BTF_KIND_CONST, BTF_KIND_DATASEC, BTF_KIND_ENUM,
BTF_KIND_FUNC, BTF_KIND_FUNC_PROTO, BTF_KIND_FWD, BTF_KIND_INT, BTF_KIND_PTR,
BTF_KIND_RESTRICT, BTF_KIND_STRUCT, BTF_KIND_TYPEDEF, BTF_KIND_UNION, BTF_KIND_UNKN,
BTF_KIND_VAR, BTF_KIND_VOLATILE,
},
obj::btf::{Btf, BtfError, MAX_RESOLVE_DEPTH},
};
unsafe impl object::pod::Pod for btf_type {}
#[derive(Clone, Debug)]
pub(crate) enum BtfType {
Unknown,
Fwd(btf_type),
Const(btf_type),
Volatile(btf_type),
Restrict(btf_type),
Ptr(btf_type),
Typedef(btf_type),
Func(btf_type),
Int(btf_type, u32),
Enum(btf_type, Vec<btf_enum>),
Array(btf_type, btf_array),
Struct(btf_type, Vec<btf_member>),
Union(btf_type, Vec<btf_member>),
FuncProto(btf_type, Vec<btf_param>),
Var(btf_type, btf_var),
DataSec(btf_type, Vec<btf_var_secinfo>),
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u32)]
pub(crate) enum BtfKind {
Unknown = BTF_KIND_UNKN,
Int = BTF_KIND_INT,
Ptr = BTF_KIND_PTR,
Array = BTF_KIND_ARRAY,
Struct = BTF_KIND_STRUCT,
Union = BTF_KIND_UNION,
Enum = BTF_KIND_ENUM,
Fwd = BTF_KIND_FWD,
Typedef = BTF_KIND_TYPEDEF,
Volatile = BTF_KIND_VOLATILE,
Const = BTF_KIND_CONST,
Restrict = BTF_KIND_RESTRICT,
Func = BTF_KIND_FUNC,
FuncProto = BTF_KIND_FUNC_PROTO,
Var = BTF_KIND_VAR,
DataSec = BTF_KIND_DATASEC,
}
impl TryFrom<u32> for BtfKind {
type Error = BtfError;
fn try_from(v: u32) -> Result<Self, Self::Error> {
use BtfKind::*;
Ok(match v {
BTF_KIND_UNKN => Unknown,
BTF_KIND_INT => Int,
BTF_KIND_PTR => Ptr,
BTF_KIND_ARRAY => Array,
BTF_KIND_STRUCT => Struct,
BTF_KIND_UNION => Union,
BTF_KIND_ENUM => Enum,
BTF_KIND_FWD => Fwd,
BTF_KIND_TYPEDEF => Typedef,
BTF_KIND_VOLATILE => Volatile,
BTF_KIND_CONST => Const,
BTF_KIND_RESTRICT => Restrict,
BTF_KIND_FUNC => Func,
BTF_KIND_FUNC_PROTO => FuncProto,
BTF_KIND_VAR => Var,
BTF_KIND_DATASEC => DataSec,
kind => return Err(BtfError::InvalidTypeKind { kind }),
})
}
}
unsafe fn read<T>(data: &[u8]) -> Result<T, BtfError> {
if mem::size_of::<T>() > data.len() {
return Err(BtfError::InvalidTypeInfo);
}
Ok(ptr::read_unaligned::<T>(data.as_ptr() as *const T))
}
unsafe fn read_array<T>(data: &[u8], len: usize) -> Result<Vec<T>, BtfError> {
if mem::size_of::<T>() * len > data.len() {
return Err(BtfError::InvalidTypeInfo);
}
Ok((0..len)
.map(|i| {
ptr::read_unaligned::<T>((data.as_ptr() as usize + i * mem::size_of::<T>()) as *const T)
})
.collect::<Vec<T>>())
}
impl BtfType {
#[allow(unused_unsafe)]
pub(crate) unsafe fn read(data: &[u8]) -> Result<BtfType, BtfError> {
let ty = unsafe { read::<btf_type>(data)? };
let data = &data[mem::size_of::<btf_type>()..];
let vlen = type_vlen(&ty) as usize;
use BtfType::*;
Ok(match type_kind(&ty)? {
BtfKind::Unknown => Unknown,
BtfKind::Fwd => Fwd(ty),
BtfKind::Const => Const(ty),
BtfKind::Volatile => Volatile(ty),
BtfKind::Restrict => Restrict(ty),
BtfKind::Ptr => Ptr(ty),
BtfKind::Typedef => Typedef(ty),
BtfKind::Func => Func(ty),
BtfKind::Int => {
// FIXME: endianness
if mem::size_of::<u32>() > data.len() {
return Err(BtfError::InvalidTypeInfo);
}
Int(
ty,
u32::from_ne_bytes(data[..mem::size_of::<u32>()].try_into().unwrap()),
)
}
BtfKind::Enum => Enum(ty, unsafe { read_array(data, vlen)? }),
BtfKind::Array => Array(ty, unsafe { read(data)? }),
BtfKind::Struct => Struct(ty, unsafe { read_array(data, vlen)? }),
BtfKind::Union => Union(ty, unsafe { read_array(data, vlen)? }),
BtfKind::FuncProto => FuncProto(ty, unsafe { read_array(data, vlen)? }),
BtfKind::Var => Var(ty, unsafe { read(data)? }),
BtfKind::DataSec => DataSec(ty, unsafe { read_array(data, vlen)? }),
})
}
pub(crate) fn type_info_size(&self) -> usize {
let ty_size = mem::size_of::<btf_type>();
use BtfType::*;
match self {
Unknown => 0,
Fwd(_) | Const(_) | Volatile(_) | Restrict(_) | Ptr(_) | Typedef(_) | Func(_) => {
ty_size
}
Int(_, _) => ty_size + mem::size_of::<u32>(),
Enum(ty, _) => ty_size + type_vlen(ty) * mem::size_of::<btf_enum>(),
Array(_, _) => ty_size + mem::size_of::<btf_array>(),
Struct(ty, _) => ty_size + type_vlen(ty) * mem::size_of::<btf_member>(),
Union(ty, _) => ty_size + type_vlen(ty) * mem::size_of::<btf_member>(),
FuncProto(ty, _) => ty_size + type_vlen(ty) * mem::size_of::<btf_param>(),
Var(_, _) => ty_size + mem::size_of::<btf_var>(),
DataSec(ty, _) => ty_size + type_vlen(ty) * mem::size_of::<btf_var_secinfo>(),
}
}
pub(crate) fn btf_type(&self) -> Option<&btf_type> {
use BtfType::*;
Some(match self {
Unknown => return None,
Fwd(ty) => ty,
Const(ty) => ty,
Volatile(ty) => ty,
Restrict(ty) => ty,
Ptr(ty) => ty,
Typedef(ty) => ty,
Func(ty) => ty,
Int(ty, _) => ty,
Enum(ty, _) => ty,
Array(ty, _) => ty,
Struct(ty, _) => ty,
Union(ty, _) => ty,
FuncProto(ty, _) => ty,
Var(ty, _) => ty,
DataSec(ty, _) => ty,
})
}
pub(crate) fn info(&self) -> Option<u32> {
self.btf_type().map(|ty| ty.info)
}
pub(crate) fn name_offset(&self) -> Option<u32> {
self.btf_type().map(|ty| ty.name_off)
}
pub(crate) fn kind(&self) -> Result<Option<BtfKind>, BtfError> {
self.btf_type().map(type_kind).transpose()
}
pub(crate) fn is_composite(&self) -> bool {
match self {
BtfType::Struct(_, _) | BtfType::Union(_, _) => true,
_ => false,
}
}
}
fn type_kind(ty: &btf_type) -> Result<BtfKind, BtfError> {
((ty.info >> 24) & 0x0F).try_into()
}
fn type_vlen(ty: &btf_type) -> usize {
(ty.info & 0xFFFF) as usize
}
pub(crate) fn member_bit_offset(info: u32, member: &btf_member) -> usize {
let k_flag = info >> 31 == 1;
let bit_offset = if k_flag {
member.offset & 0xFFFFFF
} else {
member.offset
};
bit_offset as usize
}
pub(crate) fn member_bit_field_size(ty: &btf_type, member: &btf_member) -> usize {
let k_flag = (ty.info >> 31) == 1;
let size = if k_flag { member.offset >> 24 } else { 0 };
size as usize
}
pub(crate) fn types_are_compatible(
local_btf: &Btf,
root_local_id: u32,
target_btf: &Btf,
root_target_id: u32,
) -> Result<bool, BtfError> {
let mut local_id = root_local_id;
let mut target_id = root_target_id;
let local_ty = local_btf.type_by_id(local_id)?;
let target_ty = target_btf.type_by_id(target_id)?;
if local_ty.kind()? != target_ty.kind()? {
return Ok(false);
}
for _ in 0..MAX_RESOLVE_DEPTH {
local_id = local_btf.resolve_type(local_id)?;
target_id = target_btf.resolve_type(target_id)?;
let local_ty = local_btf.type_by_id(local_id)?;
let target_ty = target_btf.type_by_id(target_id)?;
if local_ty.kind()? != target_ty.kind()? {
return Ok(false);
}
use BtfType::*;
match local_ty {
Unknown | Struct(_, _) | Union(_, _) | Enum(_, _) | Fwd(_) => return Ok(true),
Int(_, local_off) => {
if let Int(_, target_off) = target_ty {
return Ok(*local_off == 0 && *target_off == 0);
}
}
Ptr(l_ty) => {
if let Ptr(t_ty) = target_ty {
// Safety: union
unsafe {
local_id = l_ty.__bindgen_anon_1.type_;
target_id = t_ty.__bindgen_anon_1.type_;
}
continue;
}
}
Array(l_ty, _) => {
if let Array(t_ty, _) = target_ty {
// Safety: union
unsafe {
local_id = l_ty.__bindgen_anon_1.type_;
target_id = t_ty.__bindgen_anon_1.type_;
}
continue;
}
}
FuncProto(l_ty, l_params) => {
if let FuncProto(t_ty, t_params) = target_ty {
if l_params.len() != t_params.len() {
return Ok(false);
}
for (l_param, t_param) in l_params.iter().zip(t_params.iter()) {
let local_id = local_btf.resolve_type(l_param.type_)?;
let target_id = target_btf.resolve_type(t_param.type_)?;
if !types_are_compatible(local_btf, local_id, target_btf, target_id)? {
return Ok(false);
}
}
// Safety: union
unsafe {
local_id = l_ty.__bindgen_anon_1.type_;
target_id = t_ty.__bindgen_anon_1.type_;
}
continue;
}
}
_ => panic!("this shouldn't be reached"),
}
}
Err(BtfError::MaximumTypeDepthReached { type_id: local_id })
}
pub(crate) fn fields_are_compatible(
local_btf: &Btf,
mut local_id: u32,
target_btf: &Btf,
mut target_id: u32,
) -> Result<bool, BtfError> {
for _ in 0..MAX_RESOLVE_DEPTH {
local_id = local_btf.resolve_type(local_id)?;
target_id = target_btf.resolve_type(target_id)?;
let local_ty = local_btf.type_by_id(local_id)?;
let target_ty = target_btf.type_by_id(target_id)?;
if local_ty.is_composite() && target_ty.is_composite() {
return Ok(true);
}
if local_ty.kind()? != target_ty.kind()? {
return Ok(false);
}
use BtfType::*;
match local_ty {
Fwd(_) | Enum(_, _) => {
let flavorless_name =
|name: &str| name.splitn(2, "___").next().unwrap().to_string();
let local_name = flavorless_name(&*local_btf.type_name(local_ty)?.unwrap());
let target_name = flavorless_name(&*target_btf.type_name(target_ty)?.unwrap());
return Ok(local_name == target_name);
}
Int(_, local_off) => {
let local_off = (local_off >> 16) & 0xFF;
if let Int(_, target_off) = target_ty {
let target_off = (target_off >> 16) & 0xFF;
return Ok(local_off == 0 && target_off == 0);
}
}
Ptr(_) => return Ok(true),
Array(l_ty, _) => {
if let Array(t_ty, _) = target_ty {
// Safety: union
unsafe {
local_id = l_ty.__bindgen_anon_1.type_;
target_id = t_ty.__bindgen_anon_1.type_;
}
continue;
}
}
_ => panic!("this shouldn't be reached"),
}
}
Err(BtfError::MaximumTypeDepthReached { type_id: local_id })
}
impl std::fmt::Debug for btf_type {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("btf_type")
.field("name_off", &self.name_off)
.field("info", &self.info)
.field("__bindgen_anon_1", &self.__bindgen_anon_1)
.finish()
}
}
impl std::fmt::Debug for btf_type__bindgen_ty_1 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Safety: union
f.debug_struct("btf_type__bindgen_ty_1")
.field("size", unsafe { &self.size })
.field("type_", unsafe { &self.type_ })
.finish()
}
}

@ -1,3 +1,4 @@
mod btf;
mod relocation; mod relocation;
use object::{ use object::{
@ -14,7 +15,8 @@ use std::{
}; };
use thiserror::Error; use thiserror::Error;
pub use self::relocation::{relocate, RelocationError}; use btf::{Btf, BtfError, BtfExt};
pub use relocation::*;
use crate::{ use crate::{
bpf_map_def, bpf_map_def,
@ -24,11 +26,13 @@ use crate::{
const KERNEL_VERSION_ANY: u32 = 0xFFFF_FFFE; const KERNEL_VERSION_ANY: u32 = 0xFFFF_FFFE;
#[derive(Debug, Clone)] #[derive(Clone)]
pub struct Object { pub struct Object {
pub(crate) endianness: Endianness, pub(crate) endianness: Endianness,
pub license: CString, pub license: CString,
pub kernel_version: KernelVersion, pub kernel_version: KernelVersion,
pub btf: Option<Btf>,
pub btf_ext: Option<BtfExt>,
pub(crate) maps: HashMap<String, Map>, pub(crate) maps: HashMap<String, Map>,
pub(crate) programs: HashMap<String, Program>, pub(crate) programs: HashMap<String, Program>,
pub(crate) relocations: HashMap<SectionIndex, Vec<Relocation>>, pub(crate) relocations: HashMap<SectionIndex, Vec<Relocation>>,
@ -100,6 +104,8 @@ impl Object {
endianness: endianness.into(), endianness: endianness.into(),
license, license,
kernel_version, kernel_version,
btf: None,
btf_ext: None,
maps: HashMap::new(), maps: HashMap::new(),
programs: HashMap::new(), programs: HashMap::new(),
relocations: HashMap::new(), relocations: HashMap::new(),
@ -135,6 +141,9 @@ pub enum ParseError {
source: object::read::Error, source: object::read::Error,
}, },
#[error("Error parsing BTF: {0}")]
BTF(#[from] BtfError),
#[error("no license specified")] #[error("no license specified")]
MissingLicense, MissingLicense,
@ -193,7 +202,7 @@ impl<'data, 'file, 's> TryFrom<&'s Section<'data, 'file>> for BPFSection<'s> {
relocations: section relocations: section
.relocations() .relocations()
.map(|(offset, r)| { .map(|(offset, r)| {
Ok(Relocation { Ok::<_, ParseError>(Relocation {
kind: r.kind(), kind: r.kind(),
target: r.target(), target: r.target(),
addend: r.addend(), addend: r.addend(),
@ -321,6 +330,17 @@ fn parse_program(bpf: &Object, section: &BPFSection, ty: &str) -> Result<Program
}) })
} }
fn parse_btf(obj: &mut Object, section: &BPFSection) -> Result<(), BtfError> {
obj.btf = Some(Btf::parse(section.data)?);
Ok(())
}
fn parse_btf_ext(obj: &mut Object, section: &BPFSection) -> Result<(), BtfError> {
obj.btf_ext = Some(BtfExt::parse(section.data)?);
Ok(())
}
fn parse_section(bpf: &mut Object, section: BPFSection) -> Result<(), ParseError> { fn parse_section(bpf: &mut Object, section: BPFSection) -> Result<(), ParseError> {
let parts = section.name.split("/").collect::<Vec<_>>(); let parts = section.name.split("/").collect::<Vec<_>>();
@ -329,6 +349,8 @@ fn parse_section(bpf: &mut Object, section: BPFSection) -> Result<(), ParseError
bpf.maps bpf.maps
.insert(name.to_string(), parse_map(&section, name)?); .insert(name.to_string(), parse_map(&section, name)?);
} }
&[".BTF"] => parse_btf(bpf, &section)?,
&[".BTF.ext"] => parse_btf_ext(bpf, &section)?,
&["maps", name] => { &["maps", name] => {
bpf.maps bpf.maps
.insert(name.to_string(), parse_map(&section, name)?); .insert(name.to_string(), parse_map(&section, name)?);

@ -1,15 +1,15 @@
use std::collections::HashMap; use std::{collections::HashMap, io};
use object::{RelocationKind, RelocationTarget, SectionIndex}; use object::{RelocationKind, RelocationTarget, SectionIndex};
use thiserror::Error; use thiserror::Error;
use super::Object;
use crate::{ use crate::{
generated::{bpf_insn, BPF_PSEUDO_MAP_FD, BPF_PSEUDO_MAP_VALUE}, generated::{bpf_insn, BPF_PSEUDO_MAP_FD, BPF_PSEUDO_MAP_VALUE},
maps::Map, maps::Map,
obj::{btf::BtfRelocationError, Object},
}; };
#[derive(Debug, Clone, Error)] #[derive(Debug, Error)]
pub enum RelocationError { pub enum RelocationError {
#[error("unknown symbol, index `{index}`")] #[error("unknown symbol, index `{index}`")]
UnknownSymbol { index: usize }, UnknownSymbol { index: usize },
@ -19,7 +19,7 @@ pub enum RelocationError {
#[error("section `{section_index}` not found, referenced by symbol `{}`", #[error("section `{section_index}` not found, referenced by symbol `{}`",
.symbol_name.clone().unwrap_or_else(|| .symbol_index.to_string()))] .symbol_name.clone().unwrap_or_else(|| .symbol_index.to_string()))]
RelocationSectionNotFound { SectionNotFound {
section_index: usize, section_index: usize,
symbol_index: usize, symbol_index: usize,
symbol_name: Option<String>, symbol_name: Option<String>,
@ -28,8 +28,24 @@ pub enum RelocationError {
#[error("the map `{name}` at section `{section_index}` has not been created")] #[error("the map `{name}` at section `{section_index}` has not been created")]
MapNotCreated { section_index: usize, name: String }, MapNotCreated { section_index: usize, name: String },
#[error("invalid relocation offset `{offset}`")] #[error("invalid instruction index `{index}` referenced by relocation #{relocation_number}")]
InvalidRelocationOffset { offset: u64 }, InvalidInstructionIndex {
index: usize,
num_instructions: usize,
relocation_number: usize,
},
#[error("BTF error: {error}")]
BtfRelocationError {
#[from]
error: BtfRelocationError,
},
#[error("IO error: {io_error}")]
IO {
#[from]
io_error: io::Error,
},
} }
#[derive(Debug, Copy, Clone)] #[derive(Debug, Copy, Clone)]
@ -47,18 +63,26 @@ pub(crate) struct Symbol {
pub(crate) address: u64, pub(crate) address: u64,
} }
pub fn relocate(obj: &mut Object, maps: &[Map]) -> Result<(), RelocationError> { impl Object {
pub fn relocate(&mut self, maps: &[Map]) -> Result<(), RelocationError> {
self.relocate_maps(maps)?;
self.relocate_btf()?;
Ok(())
}
pub fn relocate_maps(&mut self, maps: &[Map]) -> Result<(), RelocationError> {
let maps_by_section = maps let maps_by_section = maps
.iter() .iter()
.map(|map| (map.obj.section_index, map)) .map(|map| (map.obj.section_index, map))
.collect::<HashMap<_, _>>(); .collect::<HashMap<_, _>>();
for program in obj.programs.values_mut() { for program in self.programs.values_mut() {
if let Some(relocations) = obj.relocations.get(&program.section_index) { if let Some(relocations) = self.relocations.get(&program.section_index) {
for rel in relocations { for (rel_n, rel) in relocations.iter().enumerate() {
match rel.target { match rel.target {
RelocationTarget::Symbol(index) => { RelocationTarget::Symbol(index) => {
let sym = obj let sym = self
.symbol_table .symbol_table
.get(&index) .get(&index)
.ok_or(RelocationError::UnknownSymbol { index: index.0 })?; .ok_or(RelocationError::UnknownSymbol { index: index.0 })?;
@ -68,7 +92,7 @@ pub fn relocate(obj: &mut Object, maps: &[Map]) -> Result<(), RelocationError> {
.ok_or(RelocationError::UnknownSymbolSection { index: index.0 })?; .ok_or(RelocationError::UnknownSymbolSection { index: index.0 })?;
let map = maps_by_section.get(&section_index.0).ok_or( let map = maps_by_section.get(&section_index.0).ok_or(
RelocationError::RelocationSectionNotFound { RelocationError::SectionNotFound {
symbol_index: index.0, symbol_index: index.0,
symbol_name: sym.name.clone(), symbol_name: sym.name.clone(),
section_index: section_index.0, section_index: section_index.0,
@ -84,8 +108,10 @@ pub fn relocate(obj: &mut Object, maps: &[Map]) -> Result<(), RelocationError> {
let ins_index = let ins_index =
(rel.offset / std::mem::size_of::<bpf_insn>() as u64) as usize; (rel.offset / std::mem::size_of::<bpf_insn>() as u64) as usize;
if ins_index >= instructions.len() { if ins_index >= instructions.len() {
return Err(RelocationError::InvalidRelocationOffset { return Err(RelocationError::InvalidInstructionIndex {
offset: rel.offset, index: ins_index,
num_instructions: instructions.len(),
relocation_number: rel_n,
}); });
} }
if !map.obj.data.is_empty() { if !map.obj.data.is_empty() {
@ -105,4 +131,5 @@ pub fn relocate(obj: &mut Object, maps: &[Map]) -> Result<(), RelocationError> {
} }
Ok(()) Ok(())
}
} }

Loading…
Cancel
Save