Updated scatter algorithm to use original buffer's where possible. Added scattered write algorithm

pull/7/head
ko1N 4 years ago
parent edf22e8457
commit f4e6e92cb0

@ -2,6 +2,7 @@
use std::ffi::c_void; use std::ffi::c_void;
use std::os::raw::c_char; use std::os::raw::c_char;
use std::ptr;
use std::slice; use std::slice;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
@ -12,10 +13,13 @@ use memflow_derive::connector;
use leechcore_sys::*; use leechcore_sys::*;
const PAGE_SIZE: u64 = 0x1000u64; const PAGE_SIZE: usize = 0x1000usize;
const BUF_ALIGN: u64 = 4;
const BUF_MIN_LEN: usize = 8;
const BUF_LEN_ALIGN: usize = 8;
const fn calc_num_pages(start: u64, size: u64) -> u64 { const fn calc_num_pages(start: u64, size: u64) -> u64 {
((start & (PAGE_SIZE - 1)) + size + (PAGE_SIZE - 1)) >> 12 ((start & (PAGE_SIZE as u64 - 1)) + size + (PAGE_SIZE as u64 - 1)) >> 12
} }
fn build_lc_config(device: &str) -> LC_CONFIG { fn build_lc_config(device: &str) -> LC_CONFIG {
@ -95,7 +99,7 @@ impl PciLeech {
// TODO: handle mem_map // TODO: handle mem_map
impl PhysicalMemory for PciLeech { impl PhysicalMemory for PciLeech {
fn phys_read_raw_list(&mut self, data: &mut [PhysicalReadData]) -> Result<()> { fn phys_read_raw_list(&mut self, data: &mut [PhysicalReadData]) -> Result<()> {
let mem_map = &self.mem_map; //let mem_map = &self.mem_map;
// get total number of pages // get total number of pages
let num_pages = data.iter().fold(0u64, |acc, read| { let num_pages = data.iter().fold(0u64, |acc, read| {
@ -104,19 +108,44 @@ impl PhysicalMemory for PciLeech {
// allocate scatter buffer // allocate scatter buffer
let mut mems = std::ptr::null_mut::<PMEM_SCATTER>(); let mut mems = std::ptr::null_mut::<PMEM_SCATTER>();
let result = unsafe { LcAllocScatter1(num_pages as u32, &mut mems as *mut PPMEM_SCATTER) }; let result = unsafe {
LcAllocScatter2(
(num_pages * PAGE_SIZE as u64) as u32,
std::ptr::null_mut(),
num_pages as u32,
&mut mems as *mut PPMEM_SCATTER,
)
};
if result != 1 { if result != 1 {
return Err(Error::Connector("unable to allocate scatter buffer")); return Err(Error::Connector("unable to allocate scatter buffer"));
} }
// prepare mems // prepare mems
let mut i = 0usize; let mut i = 0usize;
for read in data.iter() { for read in data.iter_mut() {
let base = read.0.address().as_page_aligned(0x1000).as_u64(); for (page_addr, out) in read.1.page_chunks(read.0.into(), PAGE_SIZE) {
let num_pages = calc_num_pages(read.0.as_u64(), read.1.len() as u64);
for p in 0..num_pages {
let mem = unsafe { *mems.offset(i as isize) }; let mem = unsafe { *mems.offset(i as isize) };
unsafe { (*mem).qwA = base + p * 0x1000 };
let addr_align = page_addr.as_u64() & (BUF_ALIGN - 1);
let len_align = out.len() & (BUF_LEN_ALIGN - 1);
if addr_align == 0 && len_align == 0 && out.len() >= BUF_MIN_LEN {
// properly aligned read
unsafe { (*mem).qwA = page_addr.as_u64() };
unsafe { (*mem).pb = out.as_mut_ptr() };
unsafe { (*mem).cb = out.len() as u32 };
} else {
// non-aligned or small read
let mut buffer_len = (out.len() + addr_align as usize).max(BUF_MIN_LEN);
buffer_len += BUF_LEN_ALIGN - (buffer_len & (BUF_LEN_ALIGN - 1));
let buffer = vec![0u8; buffer_len].into_boxed_slice();
unsafe { (*mem).qwA = page_addr.as_u64() - addr_align };
unsafe { (*mem).pb = Box::into_raw(buffer) as *mut u8 };
unsafe { (*mem).cb = buffer_len as u32 };
}
i += 1; i += 1;
} }
} }
@ -129,22 +158,28 @@ impl PhysicalMemory for PciLeech {
} }
} }
// load reads back into data // gather all 'bogus' reads we had to custom-allocate
i = 0; i = 0usize;
for read in data.iter_mut() { for read in data.iter_mut() {
let num_pages = calc_num_pages(read.0.as_u64(), read.1.len() as u64); for (page_addr, out) in read.1.page_chunks(read.0.into(), PAGE_SIZE) {
// internally lc will allocate a continuous buffer
let mem = unsafe { *mems.offset(i as isize) }; let mem = unsafe { *mems.offset(i as isize) };
let offset = (read.0.as_u64() - unsafe { (*mem).qwA }) as usize; let addr_align = page_addr.as_u64() & (BUF_ALIGN - 1);
//println!("offset={}", offset); let len_align = out.len() & (BUF_LEN_ALIGN - 1);
let page = unsafe { slice::from_raw_parts((*mem).pb, (num_pages * 0x1000) as usize) }; if addr_align != 0 || len_align != 0 || out.len() < BUF_MIN_LEN {
read.1 // take ownership of the buffer again
.copy_from_slice(&page[offset..(offset + read.1.len())]); // and copy buffer into original again
let buffer: Box<[u8]> = unsafe {
Box::from_raw(ptr::slice_from_raw_parts_mut((*mem).pb, (*mem).cb as usize))
};
out.copy_from_slice(
&buffer[addr_align as usize..out.len() + addr_align as usize],
);
}
i += num_pages as usize; i += 1;
}
} }
// free temporary buffers // free temporary buffers
@ -156,32 +191,76 @@ impl PhysicalMemory for PciLeech {
} }
fn phys_write_raw_list(&mut self, data: &[PhysicalWriteData]) -> Result<()> { fn phys_write_raw_list(&mut self, data: &[PhysicalWriteData]) -> Result<()> {
/* //let mem_map = &self.mem_map;
let mem_map = &self.mem_map;
let mut void = FnExtend::void(); // get total number of pages
let mut iter = mem_map.map_iter(data.iter().copied().map(<_>::from), &mut void); let num_pages = data.iter().fold(0u64, |acc, read| {
acc + calc_num_pages(read.0.as_u64(), read.1.len() as u64)
let handle = self.handle.lock().unwrap(); });
let mut elem = iter.next(); // allocate scatter buffer
while let Some(((addr, _), out)) = elem { let mut mems = std::ptr::null_mut::<PMEM_SCATTER>();
let result = unsafe { let result = unsafe {
LcWrite( LcAllocScatter2(
*handle, (num_pages * PAGE_SIZE as u64) as u32,
addr.as_u64(), std::ptr::null_mut(),
out.len() as u32, num_pages as u32,
out.as_ptr() as *mut u8, &mut mems as *mut PPMEM_SCATTER,
) )
}; };
if result != 1 { if result != 1 {
return Err(Error::Connector("unable to write memory")); return Err(Error::Connector("unable to allocate scatter buffer"));
} }
//println!("write({}, {}) = {}", addr.as_u64(), out.len(), result);
elem = iter.next(); // prepare mems
let mut i = 0usize;
for write in data.iter() {
for (page_addr, out) in write.1.page_chunks(write.0.into(), PAGE_SIZE) {
let mem = unsafe { *mems.offset(i as isize) };
let addr_align = page_addr.as_u64() & (BUF_ALIGN - 1);
let len_align = out.len() & (BUF_LEN_ALIGN - 1);
if addr_align == 0 && len_align == 0 && out.len() >= BUF_MIN_LEN {
// properly aligned read
unsafe { (*mem).qwA = page_addr.as_u64() };
unsafe { (*mem).pb = out.as_ptr() as *mut u8 };
unsafe { (*mem).cb = out.len() as u32 };
} else {
// non-aligned or small read
let mut buffer_len = (out.len() + addr_align as usize).max(BUF_MIN_LEN);
buffer_len += BUF_LEN_ALIGN - (buffer_len & (BUF_LEN_ALIGN - 1));
let mut buffer = vec![0u8; buffer_len].into_boxed_slice();
let write_addr = (page_addr.as_u64() - addr_align).into();
self.phys_read_into(write_addr, &mut buffer[..])?;
// copy data over
buffer[addr_align as usize..out.len() + addr_align as usize]
.copy_from_slice(out);
unsafe { (*mem).qwA = write_addr.as_u64() };
unsafe { (*mem).pb = Box::into_raw(buffer) as *mut u8 };
unsafe { (*mem).cb = buffer_len as u32 };
}
i += 1;
} }
*/ }
// dispatch write
{
let handle = self.handle.lock().unwrap();
unsafe {
LcWriteScatter(*handle, num_pages as u32, mems);
}
}
// free temporary buffers
unsafe {
LcMemFree(mems as *mut c_void);
};
Ok(()) Ok(())
} }

Loading…
Cancel
Save